Skip to main content

Advertisement

Log in

Topical Application of Vitamin D3-Loaded Hybrid Nanosystem to Offset Imiquimod-Induced Psoriasis

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Lipid-polymer hybrid nanoparticles display several benefits over either lipid and/or polymer based systems with respect to enhanced drug loading, good colloidal stability, sustained release profile, and high cellular uptake. The present work rivets on development and evaluation of vitamin D3-loaded monolithic lipid-polymer hybrid nanoparticles (VD3/LPHNPs) for their in vivo anti-psoriatic efficacy. These LPHNPs were prepared using a hot homogenization method and exhibited spherical morphology with a lower particle size (123.1 nm) with narrow PDI (0.234) and efficient encapsulation (76.80%). Further, these LPHNPs demonstrated a sustained release profile of VD3 for up to 3 days following a Korsemeyer-Peppas release model. Further, VD3/LPHNPs were formulated into a topical gel containing 0.005% w/w of VD3. Rheological data suggested that the product exhibited non-newtonian flow properties with characteristic shear-thinning and variable thixotropy features that are desirable for topical formulation. The successful formation of gel structure and its long-term stability were confirmed from the oscillatory studies such as amplitude and frequency sweep tests. In vivo efficacy assessment in imiquimod-induced psoriatic mouse model demonstrated enhanced anti-psoriatic activity of VD3 with improved PASI score when delivered as LPHNPs gel as compared to the free VD3 gel that were further supported by histopathology and immunohistochemistry.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dainichi T, Kitoh A, Otsuka A, Nakajima S, Nomura T, Kaplan DH, et al. The epithelial immune microenvironment (EIME) in atopic dermatitis and psoriasis. Nat Immunol. 2018;19(12):1286–98.

    Article  CAS  PubMed  Google Scholar 

  2. Lowes MA, Bowcock AM, Krueger JG. Pathogenesis and therapy of psoriasis. Nature. 2007;445(7130):866–73.

    Article  CAS  PubMed  Google Scholar 

  3. Lee YS, Lee M-H, Kim H-J, Won H-R, Kim C-H. Non-thermal atmospheric plasma ameliorates imiquimod-induced psoriasis-like skin inflammation in mice through inhibition of immune responses and up-regulation of PD-L1 expression. Sci Rep. 2017;7(1):1–12.

    CAS  Google Scholar 

  4. Gottlieb AB. Psoriasis: emerging therapeutic strategies. Nat Rev Drug Discov. 2005;4(1):19–34.

    Article  CAS  PubMed  Google Scholar 

  5. Sala M, Elaissari A, Fessi H. Advances in psoriasis physiopathology and treatments: up to date of mechanistic insights and perspectives of novel therapies based on innovative skin drug delivery systems (ISDDS). J Control Release. 2016;239:182–202.

    Article  CAS  PubMed  Google Scholar 

  6. Murphy EC, Schaffter SW, Friedman AJ. Nanotechnology for psoriasis therapy. Curr Dermatol Rep. 2019;8(1):14–25.

    Article  Google Scholar 

  7. Lebwohl M, Ting P, Koo J. Psoriasis treatment: traditional therapy. Ann Rheum Dis. 2005;64(suppl 2):ii83–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bhat M, Pukale S, Singh S, Mittal A, Chitkara D. Nano-enabled topical delivery of anti-psoriatic small molecules. J Drug Deliv Sci Technol. 2021;62:102328.

  9. Menter A, Griffiths CE. Current and future management of psoriasis. Lancet. 2007;370(9583):272–84.

    Article  CAS  PubMed  Google Scholar 

  10. Bikle DD, Nemanic MK, Gee E, Elias P. 1, 25-Dihydroxyvitamin D3 production by human keratinocytes Kinetics and regulation. J Clin Invest. 1986;78(2):557–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bikle DD, Nemanic MK, Whitney JO, Elias PW. Neonatal human foreskin keratinocytes produce 1, 25-dihydroxyvitamin D3. Biochemistry. 1986;25(7):1545–8.

    Article  CAS  PubMed  Google Scholar 

  12. Lehmann B. The vitamin D3 pathway in human skin and its role for regulation of biological processes. Photochem Photobiol. 2005;81(6):1246–51.

    Article  CAS  PubMed  Google Scholar 

  13. Lehmann B, Sauter W, Knuschke P, Dressler S, Meurer M. Demonstration of UVB-induced synthesis of 1α, 25-dihydroxyvitamin D 3 (calcitriol) in human skin by microdialysis. Arch Dermatol Res. 2003;295(1):24–8.

    Article  CAS  PubMed  Google Scholar 

  14. Bikle DD. Vitamin D and the skin: physiology and pathophysiology. Rev Endocr Metab Disord. 2012;13(1):3–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Popadic S, Ramic Z, Medenica L, Stojkovic MM, Trajković V, Popadic D. Antiproliferative effect of vitamin A and D analogues on adult human keratinocytes in vitro. Skin Pharmacol Physiol. 2008;21(4):227–34.

    Article  CAS  PubMed  Google Scholar 

  16. Chen TC, Persons KS, Lu Z, Mathieu JS, Holick MF. An evaluation of the biologic activity and vitamin D receptor binding affinity of the photoisomers of vitamin D3 and previtamin D3. J Nutr Biochem. 2000;11(5):267–72.

    Article  CAS  PubMed  Google Scholar 

  17. Ingram MA, Jones MB, Stonehouse W, Jarrett P, Scragg R, Mugridge O, et al. Oral vitamin D3 supplementation for chronic plaque psoriasis: a randomized, double-blind, placebo-controlled trial. J Dermatolog Treat. 2018;29(7):648–57.

    Article  CAS  PubMed  Google Scholar 

  18. Lalloz A, Bolzinger M-A, Faivre J, Latreille P-L, Ac AG, Rakotovao C, et al. Effect of surface chemistry of polymeric nanoparticles on cutaneous penetration of cholecalciferol. Int J Pharm. 2018;553(1–2):120–31.

    Article  CAS  PubMed  Google Scholar 

  19. Ramezanli T, Kilfoyle BE, Zhang Z, Michniak-Kohn BB. Polymeric nanospheres for topical delivery of vitamin D3. Int J Pharm. 2017;516(1–2):196–203.

    Article  CAS  PubMed  Google Scholar 

  20. Pukale SS, Sharma S, Dalela M, Kumar Singh A, Mohanty S, Mittal A, et al. Multi-component clobetasol-loaded monolithic lipid-polymer hybrid nanoparticles ameliorate imiquimod-induced psoriasis-like skin inflammation in Swiss albino mice. Acta Biomater. 2020;115:393–409.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Z, Tsai PC, Ramezanli T, Michniak-Kohn BB. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5(3):205–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sakdiset P, Amnuaikit T, Pichayakorn W, Pinsuwan S. Formulation development of ethosomes containing indomethacin for transdermal delivery. J Drug Deliv Sci Technol. 2019;52:760–8.

    Article  CAS  Google Scholar 

  23. Sun L, Liu Z, Wang L, Cun D, Tong HH, Yan R, et al. Enhanced topical penetration, system exposure and anti-psoriasis activity of two particle-sized, curcumin-loaded PLGA nanoparticles in hydrogel. J Control Release. 2017;254:44–54.

    Article  CAS  PubMed  Google Scholar 

  24. Şenyiğit T, Sonvico F, Barbieri S, Özer Ö, Santi P, Colombo P. Lecithin/chitosan nanoparticles of clobetasol-17-propionate capable of accumulation in pig skin. J Control Release. 2010;142(3):368–73.

    Article  PubMed  CAS  Google Scholar 

  25. Shah PP, Desai PR, Patel AR, Singh MS. Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs. Biomaterials. 2012;33(5):1607–17.

    Article  CAS  PubMed  Google Scholar 

  26. Desai PR, Marepally S, Patel AR, Voshavar C, Chaudhuri A, Singh M. Topical delivery of anti-TNFα siRNA and capsaicin via novel lipid-polymer hybrid nanoparticles efficiently inhibits skin inflammation in vivo. J Control Release. 2013;170(1):51–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Desai P, Patlolla RR, Singh M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol Membr Biol. 2010;27(7):247–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaur A, Katiyar SS, Kushwah V, Jain S. Nanoemulsion loaded gel for topical co-delivery of clobitasol propionate and calcipotriol in psoriasis. Nanomedicine. 2017;13(4):1473–82.

    Article  CAS  PubMed  Google Scholar 

  29. Sonawane R, Harde H, Katariya M, Agrawal S, Jain S. Solid lipid nanoparticles-loaded topical gel containing combination drugs: an approach to offset psoriasis. Expert Opin Drug Deliv. 2014;11(12):1833–47.

    Article  CAS  PubMed  Google Scholar 

  30. Arora R, Katiyar SS, Kushwah V, Jain S. Solid lipid nanoparticles and nanostructured lipid carrier-based nanotherapeutics in treatment of psoriasis: a comparative study. Expert Opin Drug Deliv. 2017;14(2):165–77.

    Article  CAS  PubMed  Google Scholar 

  31. Date T, Nimbalkar V, Kamat J, Mittal A, Mahato RI, Chitkara D. Lipid-polymer hybrid nanocarriers for delivering cancer therapeutics. J Control Release. 2018;271:60–73.

    Article  CAS  PubMed  Google Scholar 

  32. Sharma S, Mazumdar S, Italiya KS, Date T, Mahato RI, Mittal A, et al. Cholesterol and morpholine grafted cationic amphiphilic copolymers for miRNA-34a delivery. Mol Pharm. 2018;15(6):2391–402.

    Article  CAS  PubMed  Google Scholar 

  33. D’Souza S. A review of in vitro drug release test methods for nano-sized dosage forms. Advances in Pharmaceutics. 2014;2014.

  34. Jain AK, Thareja S. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif Cells Nanomed Biotechnol. 2019;47(1):524–39.

    Article  CAS  PubMed  Google Scholar 

  35. D’Souza SS, DeLuca PP. Methods to assess in vitro drug release from injectable polymeric particulate systems. Pharm Res. 2006;23(3):460–74.

    Article  CAS  PubMed  Google Scholar 

  36. Weng J, Tong HH, Chow SF. In vitro release study of the polymeric drug nanoparticles: development and validation of a novel method. Pharmaceutics. 2020;12(8):732.

    Article  CAS  PubMed Central  Google Scholar 

  37. Guichard A, Humbert P, Tissot M, Muret P, Courderot-Masuyer C, Viennet C. Effects of topical corticosteroids on cell proliferation, cell cycle progression and apoptosis: in vitro comparison on HaCaT. Int J Pharm. 2015;479(2):422–9.

    Article  PubMed  CAS  Google Scholar 

  38. Wen D, Chitkara D, Wu H, Danquah M, Patil R, Miller DD, et al. LHRH-conjugated micelles for targeted delivery of antiandrogen to treat advanced prostate cancer. Pharm Res. 2014;31(10):2784–95.

    Article  CAS  PubMed  Google Scholar 

  39. Mazumdar S, Italiya KS, Sharma S, Chitkara D, Mittal A. Effective cellular internalization, cell cycle arrest and improved pharmacokinetics of Tamoxifen by cholesterol based lipopolymeric nanoparticles. Int J Pharm. 2018;543(1–2):96–106.

    Article  CAS  PubMed  Google Scholar 

  40. Kothari IR, Mazumdar S, Sharma S, Italiya K, Mittal A, Chitkara D. Docetaxel and alpha-lipoic acid co-loaded nanoparticles for cancer therapy. Ther Deliv. 2019;10(4):227–40.

    Article  CAS  PubMed  Google Scholar 

  41. Horváth S, Komlódi R, Perkecz A, Pintér E, Gyulai R, Kemény Á. Methodological refinement of Aldara-induced psoriasiform dermatitis model in mice. Sci Rep. 2019;9(1):1–8.

    Article  Google Scholar 

  42. Kim JY, Ahn J, Kim J, Choi M, Jeon H, Choe K, et al. Nanoparticle-assisted transcutaneous delivery of a signal transducer and activator of transcription 3-inhibiting peptide ameliorates psoriasis-like skin inflammation. ACS Nano. 2018;12(7):6904–16.

    Article  CAS  PubMed  Google Scholar 

  43. Kang N-W, Kim M-H, Sohn S-Y, Kim K-T, Park J-H, Lee S-Y, et al. Curcumin-loaded lipid-hybridized cellulose nanofiber film ameliorates imiquimod-induced psoriasis-like dermatitis in mice. Biomaterials. 2018;182:245–58.

    Article  CAS  PubMed  Google Scholar 

  44. Vasseur P, Pohin M, Jégou J, Favot L, Venisse N, Mcheik J, et al. Liver fibrosis is associated with cutaneous inflammation in the imiquimod-induced murine model of psoriasiform dermatitis. Br J Dermatol. 2018;179(1):101–9.

    Article  CAS  PubMed  Google Scholar 

  45. Hashimoto Y, Tsutsui M, Matsuo S, Iizuka H. Flow cytometric analysis of pig epidermal keratinocytes: effects of ultraviolet B irradiation (UVB) and topical PUVA treatment. J Dermatol Sci. 1995;10(1):16–24.

    Article  CAS  PubMed  Google Scholar 

  46. Boehncke W-H. Topical photodynamic therapy for psoriasis. Comprehensive Series in Photosciences: Elsevier; 2001. p. 259–70.

  47. Witman PM, editor. Topical therapies for localized psoriasis. Mayo Clin Proc. 2001;76:943–949.

  48. Mezei M, Gulasekharam V. Liposomes-a selective drug delivery system for the topical route of administration I Lotion dosage form. Life Sci. 1980;26(18):1473–7.

    Article  CAS  PubMed  Google Scholar 

  49. Alam MS, Ali MS, Alam N, Siddiqui MR, Shamim M, Safhi M. In vivo study of clobetasol propionate loaded nanoemulsion for topical application in psoriasis and atopic dermatitis. Drug Invent. Today. 2013;5(1):8–12.

    Article  CAS  Google Scholar 

  50. Aggarwal G, Nagpal M, Kaur G. Development and comparison of nanosponge and niosome based gel for the topical delivery of tazarotene. Pharm Nanotechnol. 2016;4(3):213–28.

    Article  CAS  PubMed  Google Scholar 

  51. Jin Y, Zhang X, Zhang B, Kang H, Du L, Li M. Nanostructures of an amphiphilic zinc phthalocyanine polymer conjugate for photodynamic therapy of psoriasis. Colloids Surf B Biointerfaces. 2015;128:405–9.

    Article  CAS  PubMed  Google Scholar 

  52. Lu GW, Gao P. Emulsions and microemulsions for topical and transdermal drug delivery. Handbook of non-invasive drug delivery systems: Elsevier; 2010. p. 59–94.

    Google Scholar 

  53. Shnoudeh AJ, Hamad I, Abdo RW, Qadumii L, Jaber AY, Surchi HS, et al. Synthesis, characterization, and applications of metal nanoparticles. Biomaterials and bionanotechnology: Elsevier; 2019. p. 527–612.

    Google Scholar 

  54. Shen J, Burgess DJ. In vitro dissolution testing strategies for nanoparticulate drug delivery systems: recent developments and challenges. Drug Deliv Transl Res. 2013;3(5):409–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledged Incisive Element LLC, USA, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Chitkara.

Ethics declarations

Conflict of Interest

This work was funded by Incisive Element LLC, USA, and might result into commercial products that can be licenced to other pharmaceutical companies or developed in house, in which the authors have a commercial and/or financial interest. The authors (DC and AM) are the founding directors of Nanobrid Innovations Private Limited, India, that is involved in the development of nanotechnology-based products. They have a business and/or financial interest in the operations of the company. The same could be disclosed on request.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pukale, S.S., Mittal, A. & Chitkara, D. Topical Application of Vitamin D3-Loaded Hybrid Nanosystem to Offset Imiquimod-Induced Psoriasis. AAPS PharmSciTech 22, 238 (2021). https://doi.org/10.1208/s12249-021-02116-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02116-5

Key words

Navigation