Skip to main content
Log in

Investigation on Potential of Chitosan Nanoparticles for Oral Bioavailability Enhancement of Risedronate Sodium

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Risedronate sodium (RS) is used in osteoporosis for bone reabsorption. It is a BCS class III drug having poor oral bioavailability (<0.63%) due to low permeability. In the present study, RS-loaded chitosan nanoparticles were developed to increase oral bioavailability and evaluated for various parameters. The DSC study indicated compatibility of RS with excipients in their physical mixture. The nanoparticles were prepared by ionotropic gelation technique and lyophilized. The optimized batch (RS-CNs) was found to have particles of size 268.7 nm and zeta potential of 24.9 mV. The TEM image of RS-CNs revealed discrete spherical particles. Angle of repose of 27.02 indicates good flow property of nanoparticles. FT-IR spectra of RS-CNs showed characteristic peaks of RS indicating compatibility of RS with the excipients. The mucin binding efficiency of RS-CNs was obtained as 63.42%. The in vitro release study of RS indicated controlled delivery from RS-CNs over 22 h. The release mechanism was found to be diffusion- and erosion-controlled release. Ex vivo study using rat intestine revealed faster permeation of 32.78% in 6 h from RS-CNs compared to plain drug solution. In vivo pharmacokinetic study in rats showed increased Cmax (1.8 fold) from RS-CNs compared to marketed formulation. The relative bioavailability of 193% from RS-CNs indicated significant enhancement in bioavailability upon nanoparticle formulation. The RS-CNs were found to be stable at room and refrigerated conditions. In conclusion, developed RS-loaded chitosan nanoparticles seem to be a promising approach to increase oral bioavailability and can avoid upper GI tract side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Compston J, Cooper A, Cooper C, Gittoes N, Gregson C, Harvey N, et al. UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos. 2017;12(1):43. https://doi.org/10.1007/s11657-017-0324-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Riggs BL, Melton IL. The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone. 1995;17(5):S505–S11. https://doi.org/10.1016/8756-3282(95)00258-4.

    Article  Google Scholar 

  3. McClung MR, Geusens P, Miller PD, Zippel H, Bensen WG, Roux C, et al. Effect of risedronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N Engl J Med. 2001;344(5):333–40. https://doi.org/10.1056/NEJM200102013440503.

    Article  CAS  Google Scholar 

  4. Shah NV, Gohil DY, Seth AK, Aundhia CJ, Patel SS. Development of risedronate sodium-loaded nanosponges by experimental design: optimization and in vitro characterization. Indian J Pharm Sci. 2019;81(2):309–16. https://doi.org/10.36468/pharmaceutical-sciences.512.

    Article  Google Scholar 

  5. White NJ, Perry CM. Risedronate once a week. Treat Endocrinol. 2003;2(6):415–20. https://doi.org/10.2165/00024677-200302060-00005.

    Article  CAS  PubMed  Google Scholar 

  6. Elkady OA, Tadros MI, El-Laithy HM. QbD Approach for novel crosslinker-free ionotropic gelation of risedronate sodium-chitosan nebulizable microspheres: optimization and characterization. AAPS PharmSciTech. 2019;21(1):14. https://doi.org/10.1208/s12249-019-1561-2.

    Article  CAS  PubMed  Google Scholar 

  7. Dave VS, Gupta D, Yu M, Nguyen P, Varghese GS. Current and evolving approaches for improving the oral permeability of BCS class III or analogous molecules. Drug Dev Ind Pharm. 2017;43(2):177–89. https://doi.org/10.1080/03639045.2016.1269122.

    Article  CAS  PubMed  Google Scholar 

  8. Madni A, Rehman S, Sultan H, Khan MM, Ahmad F, Raza MR, et al. Mechanistic approaches of internalization, subcellular trafficking, and cytotoxicity of nanoparticles for targeting the small intestine. AAPS PharmSciTech. 2020;22(1):3. https://doi.org/10.1208/s12249-020-01873-z.

    Article  PubMed  Google Scholar 

  9. Jung IW, Han HK. Effective mucoadhesive liposomal delivery system for risedronate: preparation and in vitro/in vivo characterization. Int J Nanomedicine. 2014;9:2299–306. https://doi.org/10.2147/IJN.S61181.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dissette V, Bozzi P, Bignozzi CA, Dalpiaz A, Ferraro L, Beggiato S, et al. Particulate adducts based on sodium risedronate and titanium dioxide for the bioavailability enhancement of oral administered bisphosphonates. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences. 2010;41(2):328–36. https://doi.org/10.1016/j.ejps.2010.06.020.

    Article  CAS  Google Scholar 

  11. Khajuria DK, Disha C, Vasireddi R, Razdan R, Mahapatra DR. Risedronate/zinc-hydroxyapatite based nanomedicine for osteoporosis. Mater Sci Eng C Mater Biol Appl. 2016;63:78–87. https://doi.org/10.1016/j.msec.2016.02.062.

    Article  CAS  PubMed  Google Scholar 

  12. Ilem-Ozdemir D, Gundogdu E, Ekinci M, Ozgenc E, Asikoglu M. Comparative permeability studies with radioactive and nonradioactive risedronate sodium from self-microemulsifying drug delivery system and solution. Drug Dev Ind Pharm. 2015;41(9):1493–8. https://doi.org/10.3109/03639045.2014.959022.

    Article  CAS  PubMed  Google Scholar 

  13. Florence AT. Nanoparticle uptake by the oral route: fulfilling its potential? Drug Discov Today Technol. 2005;2(1):75–81. https://doi.org/10.1016/j.ddtec.2005.05.019.

    Article  CAS  PubMed  Google Scholar 

  14. Desai MP, Labhasetwar V, Amidon GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res. 1996;13(12):1838–45. https://doi.org/10.1023/a:1016085108889.

    Article  CAS  PubMed  Google Scholar 

  15. Florence AT. The oral absorption of micro-and nanoparticulates: neither exceptional nor unusual. Pharm Res. 1997;14(3):259–66. https://doi.org/10.1023/a:1012029517394.

    Article  CAS  PubMed  Google Scholar 

  16. Sonaje K, Lin KJ, Tseng MT, Wey SP, Su FY, Chuang EY, et al. Effects of chitosan-nanoparticle-mediated tight junction opening on the oral absorption of endotoxins. Biomaterials. 2011;32(33):8712–21. https://doi.org/10.1016/j.biomaterials.2011.07.086.

    Article  CAS  PubMed  Google Scholar 

  17. Sonaje K, Lin YH, Juang JH, Wey SP, Chen CT, Sung HW. In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery. Biomaterials. 2009;30(12):2329–39. https://doi.org/10.1016/j.biomaterials.2008.12.066.

    Article  CAS  PubMed  Google Scholar 

  18. Barbieri S, Buttini F, Rossi A, Bettini R, Colombo P, Ponchel G, et al. Ex vivo permeation of tamoxifen and its 4-OH metabolite through rat intestine from lecithin/chitosan nanoparticles. Int J Pharm. 2015;491(1-2):99–104. https://doi.org/10.1016/j.ijpharm.2015.06.021.

    Article  CAS  PubMed  Google Scholar 

  19. Feng C, Wang Z, Jiang C, Kong M, Zhou X, Li Y, et al. Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: in vitro and in vivo evaluation. Int J Pharm. 2013;457(1):158–67. https://doi.org/10.1016/j.ijpharm.2013.07.079.

    Article  CAS  PubMed  Google Scholar 

  20. Xu Y, Fang T, Yang Y, Sun L, Shen Q. Preparation of deoxycholate-modified docetaxel-cimetidine complex chitosan nanoparticles to improve oral bioavailability. AAPS PharmSciTech. 2019;20(7):302. https://doi.org/10.1208/s12249-019-1520-y.

    Article  CAS  PubMed  Google Scholar 

  21. Miladi K, Sfar S, Fessi H, Elaissari A. Enhancement of alendronate encapsulation in chitosan nanoparticles. J Drug Deliv Sci Technol. 2015;30:391–6. https://doi.org/10.1016/j.jddst.2015.04.007.

    Article  CAS  Google Scholar 

  22. Patel N, Desai J, Kumar P, Thakkar HP. Development and in vitro characterization of capecitabine-loaded alginate–pectinate–chitosan beads for colon targeting. Journal of Macromolecular Science, Part B. 2016;55(1):33–54. https://doi.org/10.1080/00222348.2015.1110551.

    Article  CAS  Google Scholar 

  23. Jain S, Reddy CSK, Swami R, Kushwah V. Amphotericin B loaded chitosan nanoparticles: implication of bile salt stabilization on gastrointestinal stability, permeability and oral bioavailability. AAPS PharmSciTech. 2018;19(7):3152–64. https://doi.org/10.1208/s12249-018-1153-6.

    Article  CAS  PubMed  Google Scholar 

  24. Desai J, Khatri N, Chauhan S, Seth A. Design, development and optimization of self-microemulsifying drug delivery system of an anti-obesity drug. J Pharm Bioallied Sci. 2012;4(Suppl 1):S21. https://doi.org/10.4103/0975-7406.94124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen S, Guo F, Deng T, Zhu S, Liu W, Zhong H, et al. Eudragit S100-coated chitosan nanoparticles co-loading tat for enhanced oral colon absorption of insulin. AAPS PharmSciTech. 2017;18(4):1277–87. https://doi.org/10.1208/s12249-016-0594-z.

    Article  CAS  PubMed  Google Scholar 

  26. Mitra S, Gaur U, Ghosh P, Maitra A. Tumour targeted delivery of encapsulated dextran–doxorubicin conjugate using chitosan nanoparticles as carrier. J Control Release. 2001;74(1-3):317–23. https://doi.org/10.1016/s0168-3659(01)00342-x.

    Article  CAS  PubMed  Google Scholar 

  27. Otsuka M, Mouri Y, Matsuda Y. Chemometric evaluation of pharmaceutical properties of antipyrine granules by near-infrared spectroscopy. AAPS PharmSciTech. 2003;4(3):E47. https://doi.org/10.1208/pt040347.

    Article  PubMed  Google Scholar 

  28. Yin Y, Chen D, Qiao M, Lu Z, Hu H. Preparation and evaluation of lectin-conjugated PLGA nanoparticles for oral delivery of thymopentin. J Control Release. 2006;116(3):337–45. https://doi.org/10.1016/j.jconrel.2006.09.015.

    Article  CAS  PubMed  Google Scholar 

  29. Algharib SA, Dawood A, Zhou K, Chen D, Li C, Meng K, et al. Designing, structural determination and biological effects of rifaximin loaded chitosan-carboxymethyl chitosan nanogel. Carbohydr Polym. 2020;248:116782. https://doi.org/10.1016/j.carbpol.2020.116782.

    Article  CAS  PubMed  Google Scholar 

  30. Singh K, Mishra A, Singh A. Synthesis characterization and in vitro release study of ciprofloxacin-loaded chitosan nanoparticle. BioNanoScience. 2018;8(1):229–36. https://doi.org/10.1007/s12668-017-0470-7.

    Article  Google Scholar 

  31. Thakor S, Vhora I, Desai J, Thakkar S, Thakkar H. Physiologically activated phase transition systems for improved ocular retention of ketorolac tromethamine. J Pharm Bioallied Sci. 2012;4(Suppl 1):S6–7. https://doi.org/10.4103/0975-7406.94117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eedara BB, Veerareddy PR, Jukanti R, Bandari S. Improved oral bioavailability of fexofenadine hydrochloride using lipid surfactants: ex vivo, in situ and in vivo studies. Drug Dev Ind Pharm. 2014;40(8):1030–43. https://doi.org/10.3109/03639045.2013.801984.

    Article  CAS  PubMed  Google Scholar 

  33. Bollam S, Kandadi P, Apte SS, Veerabrahma K. Development of indinavir submicron lipid emulsions loaded with lipoamino acids-in vivo pharmacokinetics and brain-specific delivery. AAPS PharmSciTech. 2011;12(1):422–30. https://doi.org/10.1208/s12249-011-9604-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moustapha ME, Kamal M, Elgamal RM. An eco-friendly HPLC-UV method for the determination of risedronate in its bulk and tablet dosage form with application to content uniformity, dissolution and stability testing. Saudi Pharm J. 2020;28:1301–8. https://doi.org/10.1016/j.jsps.2020.08.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yin L, Ding J, He C, Cui L, Tang C, Yin C. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials. 2009;30(29):5691–700. https://doi.org/10.1016/j.biomaterials.2009.06.055.

    Article  CAS  PubMed  Google Scholar 

  36. Qi L, Xu Z, Jiang X, Hu C, Zou X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res. 2004;339(16):2693–700. https://doi.org/10.1016/j.carres.2004.09.007.

    Article  CAS  Google Scholar 

  37. Mendes AC, Sevilla Moreno J, Hanif M, EL Douglas T, Chen M, Chronakis IS. Morphological, mechanical and mucoadhesive properties of electrospun chitosan/phospholipid hybrid nanofibers. Int J Mol Sci. 2018;19(8):2266. https://doi.org/10.3390/ijms19082266.

    Article  CAS  PubMed Central  Google Scholar 

  38. Papadimitriou S, Bikiaris D, Avgoustakis K, Karavas E, Georgarakis M. Chitosan nanoparticles loaded with dorzolamide and pramipexole. Carbohydr Polym. 2008;73(1):44–54. https://doi.org/10.1016/j.carbpol.2007.11.007.

    Article  CAS  Google Scholar 

  39. Kumar M, Pandey RS, Patra KC, Jain SK, Soni ML, Dangi JS, et al. Evaluation of neuropeptide loaded trimethyl chitosan nanoparticles for nose to brain delivery. Int J Biol Macromol. 2013;61:189–95. https://doi.org/10.1016/j.ijbiomac.2013.06.041.

    Article  CAS  PubMed  Google Scholar 

  40. Javia A, Thakkar H. Intranasal delivery of tapentadol hydrochloride-loaded chitosan nanoparticles: formulation, characterisation and its in vivo evaluation. Journal of Microencapsuation. 2017;34(7):644–58.

    Article  CAS  Google Scholar 

  41. Modi J, Joshi G, Sawant K. Chitosan based mucoadhesive nanoparticles of ketoconazole for bioavailability enhancement: formulation, optimization, in vitro and ex vivo evaluation. Drug Dev Ind Pharm. 2013;39(4):540–7. https://doi.org/10.3109/03639045.2012.666978.

    Article  CAS  PubMed  Google Scholar 

  42. Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK. Chitosan–sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in vitro characterisation. Eur J Pharm Biopharm. 2008;68(3):513–25. https://doi.org/10.1016/j.ejpb.2007.09.009.

    Article  CAS  PubMed  Google Scholar 

  43. Bernkop-Schnurch A, Weithaler A, Albrecht K, Greimel A. Thiomers: preparation and in vitro evaluation of a mucoadhesive nanoparticulate drug delivery system. Int J Pharm. 2006;317(1):76–81. https://doi.org/10.1016/j.ijpharm.2006.02.044.

    Article  CAS  PubMed  Google Scholar 

  44. Rahat I, Rizwanullah M, Gilani SJ, Jummah MB, Imam SS, Kala C, et al. Thymoquinone loaded chitosan-solid lipid nanoparticles: formulation optimization to oral bioavailability study. J Drug Deliv Sci Technol. 2021;64:102565. https://doi.org/10.1016/j.jddst.2021.102565.

    Article  CAS  Google Scholar 

  45. Sharma S, Pukale SS, Sahel DK, Agarwal DS, Dalela M, Mohanty S, et al. Folate-targeted cholesterol-grafted lipo-polymeric nanoparticles for chemotherapeutic agent delivery. AAPS PharmSciTech. 2020;21(7):280. https://doi.org/10.1208/s12249-020-01812-y.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Sophisticated Instrumentation Centre for Applied Research and testing (SICART), Vallabh Vidyanagar, for providing the facility of transmission electron microscopy for morphology study.

Author information

Authors and Affiliations

Authors

Contributions

Nikhil Suthar: investigation, methodology, formal analysis, software, and visualization. Jagruti Desai: methodology, investigation, writing—review and editing— and data curation. Hetal Thakkar: conceptualization, supervision, project administration, and writing—review and editing.

Corresponding author

Correspondence to Hetal Paresh Thakkar.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suthar, N., Desai, J. & Thakkar, H.P. Investigation on Potential of Chitosan Nanoparticles for Oral Bioavailability Enhancement of Risedronate Sodium. AAPS PharmSciTech 22, 236 (2021). https://doi.org/10.1208/s12249-021-02090-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02090-y

KEY WORDS

Navigation