Skip to main content
Log in

Design and Optimization of 3D-Printed Gastroretentive Floating Devices by Central Composite Design

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This study aimed to optimize the size of capsule-shaped 3D-printed devices (CPD) using an experimental design by the response surface methodology to provide a gastroretentive drug delivery system (GRDDS) with optimal floating time. The CPD was fabricated using a fused deposition modeling (FDM) 3D printer. The central composite design was employed for the optimization of the devices. The morphology of the CPD was observed using a digital microscope and scanning electron microscope (SEM). The in vitro floating time and drug release were evaluated using a USP dissolution apparatus II. Appropriate total floating time (TFT) of the devices (more than 3 h) was obtained with the device’s body, cap, and bottom thickness of 1.2, 1.8, and 2.9 mm, respectively. The release kinetics of the drug from the devices fitted well with zero-order kinetics. In conclusion, the optimization of CPD for GRDDS using the experimental design provided the devices with desirable floating time and ideal drug release characteristics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goyanes A, Fina F, Martorana A, Sedough D, Gaisford S, Basit AW. Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing. Int J Pharm. 2017;527(1-2):21–30. https://doi.org/10.1016/j.ijpharm.2017.05.021.

    Article  CAS  PubMed  Google Scholar 

  2. Chai X, Chai H, Wang X, Yang J, Li J, Zhao Y, et al. Fused deposition modeling (FDM) 3D printed tablets for intragastric floating delivery of domperidone. Sci Rep. 2017;7(1):2829. https://doi.org/10.1038/s41598-017-03097-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goyanes A, Buanz AB, Basit AW, Gaisford S. Fused-filament 3D printing (3DP) for fabrication of tablets. Int J Pharm. 2014;476(1-2):88–92. https://doi.org/10.1016/j.ijpharm.2014.09.044.

    Article  CAS  PubMed  Google Scholar 

  4. Lamichhane S, Bashyal S, Keum T, Noh G, Seo JE, Bastola R, et al. Complex formulations, simple techniques: can 3D printing technology be the midas touch in pharmaceutical industry? Asian J Pharm Sci. 2019;14(5):465–79. https://doi.org/10.1016/j.ajps.2018.11.008.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Economidou SN, Pere CPP, Reid A, Uddin MJ, Windmill JFC, Lamprou DA, et al. 3D printed microneedle patches using stereolithography (SLA) for intradermal insulin delivery. Mater Sci Eng C Mater Biol Appl. 2019;102:743–55. https://doi.org/10.1016/j.msec.2019.04.063.

    Article  CAS  PubMed  Google Scholar 

  6. Ali Z, Türeyen EB, Karpat Y, Çakmakcı M. Fabrication of polymer micro needles for transdermal drug delivery system using DLP based projection stereo-lithography. Procedia CIRP. 2016;42:87–90. https://doi.org/10.1016/j.procir.2016.02.194.

    Article  Google Scholar 

  7. Clark EA, Alexander MR, Irvine DJ, Roberts CJ, Wallace MJ, Sharpe S, et al. 3D printing of tablets using inkjet with UV photoinitiation. Int J Pharm. 2017;529(1-2):523–30. https://doi.org/10.1016/j.ijpharm.2017.06.085.

    Article  CAS  PubMed  Google Scholar 

  8. Charoenying T, Patrojanasophon P, Ngawhirunpat T, Rojanarata T, Akkaramongkolporn P, Opanasopit P. Three-dimensional (3D)-printed devices composed of hydrophilic cap and hydrophobic body for improving buoyancy and gastric retention of domperidone tablets. Eur J Pharm Sci. 2020;155:105555. https://doi.org/10.1016/j.ejps.2020.105555.

    Article  CAS  PubMed  Google Scholar 

  9. Shin S, Kim TH, Jeong SW, Chung SE, Lee DY, Kim DH, et al. Development of a gastroretentive delivery system for acyclovir by 3D printing technology and its in vivo pharmacokinetic evaluation in Beagle dogs. PLoS One. 2019;14(5):e0216875. https://doi.org/10.1371/journal.pone.0216875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mandal UK, Chatterjee B, Senjoti FG. Gastro-retentive drug delivery systems and their in vivo success: a recent update. Asian J Pharm Sci. 2016;11(5):575–84. https://doi.org/10.1016/j.ajps.2016.04.007.

    Article  Google Scholar 

  11. Pawar VK, Kansal S, Garg G, Awasthi R, Singodia D, Kulkarni GT. Gastroretentive dosage forms: a review with special emphasis on floating drug delivery systems. Drug Deliv. 2011;18(2):97–110. https://doi.org/10.3109/10717544.2010.520354.

    Article  CAS  PubMed  Google Scholar 

  12. Nayak A, Malakar J, Sen K. Gastroretentive drug delivery technologies: current approaches and future potential. J Pharm Educ Res. 2010;1(2):1–12.

    CAS  Google Scholar 

  13. Lopes CM, Bettencourt C, Rossi A, Buttini F, Barata P. Overview on gastroretentive drug delivery systems for improving drug bioavailability. Int J Pharm. 2016;510(1):144–58. https://doi.org/10.1016/j.ijpharm.2016.05.016.

    Article  CAS  PubMed  Google Scholar 

  14. Iglesias N, Galbis E, Romero-Azogil L, Benito E, Lucas R, Garcia-Martin MG, et al. In-depth study into polymeric materials in low-density gastroretentive formulations. Pharmaceutics. 2020;12(7). https://doi.org/10.3390/pharmaceutics12070636.

  15. Li Q, Guan X, Cui M, Zhu Z, Chen K, Wen H, et al. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing. Int J Pharm. 2018;535(1-2):325–32. https://doi.org/10.1016/j.ijpharm.2017.10.037.

    Article  CAS  PubMed  Google Scholar 

  16. Fu J, Yin H, Yu X, Xie C, Jiang H, Jin Y, et al. Combination of 3D printing technologies and compressed tablets for preparation of riboflavin floating tablet-in-device (TiD) systems. Int J Pharm. 2018;549(1-2):370–9. https://doi.org/10.1016/j.ijpharm.2018.08.011.

    Article  CAS  PubMed  Google Scholar 

  17. Qi X, Ren Y, Wang X. New advances in the biodegradation of poly(lactic) acid. Int Biodeterior Biodegradation. 2017;117:215–23. https://doi.org/10.1016/j.ibiod.2017.01.010.

    Article  CAS  Google Scholar 

  18. Song JH, Murphy RJ, Narayan R, Davies GB. Biodegradable and compostable alternatives to conventional plastics. Philos Trans R Soc Lond Ser B Biol Sci. 2009;364(1526):2127–39. https://doi.org/10.1098/rstb.2008.0289.

    Article  CAS  Google Scholar 

  19. Xu L, Crawford K, Gorman CB. Effects of temperature and pH on the degradation of poly(lactic acid) brushes. Macromolecules. 2011;44(12):4777–82. https://doi.org/10.1021/ma2000948.

    Article  CAS  Google Scholar 

  20. Huanbutta K, Sangnim T. Design and development of zero-order drug release gastroretentive floating tablets fabricated by 3D printing technology. J Drug Deliv Sci Technol. 2019;52:831–7. https://doi.org/10.1016/j.jddst.2019.06.004.

    Article  CAS  Google Scholar 

  21. Aggarwal A, Bhatt M. Commonly used gastrointestinal drugs. Handb Clin Neurol. 2014;120:633–43. https://doi.org/10.1016/B978-0-7020-4087-0.00043-7.

    Article  PubMed  Google Scholar 

  22. Reddymasu SC, Soykan I, McCallum RW. Domperidone: review of pharmacology and clinical applications in gastroenterology. Am J Gastroenterol. 2007;102(9):2036–45. https://doi.org/10.1111/j.1572-0241.2007.01255.x.

    Article  CAS  PubMed  Google Scholar 

  23. Paulo F, Santos L. Design of experiments for microencapsulation applications: a review. Mater Sci Eng C Mater Biol Appl. 2017;77:1327–40. https://doi.org/10.1016/j.msec.2017.03.219.

    Article  CAS  PubMed  Google Scholar 

  24. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008;76(5):965–77. https://doi.org/10.1016/j.talanta.2008.05.019.

    Article  CAS  PubMed  Google Scholar 

  25. Pound J. British Pharmacopoeia Health Ministers of the United Kingdom; 2019.

  26. Charoenying T, Patrojanasophon P, Ngawhirunpat T, Rojanarata T, Akkaramongkolporn P, Opanasopit P. Effects of thermal crosslinking on the properties and release profiles of three-dimensional (3D)-printed poly vinyl alcohol (PVA) tablets. Key Eng Mater. 2020;859:258–64. https://doi.org/10.4028/www.scientific.net/KEM.859.258.

    Article  Google Scholar 

  27. Charoenying T, Patrojanasophon P, Ngawhirunpat T, Rojanarata T, Akkaramongkolporn P, Opanasopit P. Fabrication of floating capsule-in-3D-printed devices as gastro-retentive delivery systems of amoxicillin. J Drug Deliv Sci Technol. 2020;55:101393. https://doi.org/10.1016/j.jddst.2019.101393.

    Article  CAS  Google Scholar 

  28. Tagami T, Fukushige K, Ogawa E, Hayashi N, Ozeki T. 3D printing factors important for the fabrication of polyvinylalcohol filament-based tablets. Biol Pharm Bull. 2017;40:357–64. https://doi.org/10.1248/bpb.b16-00878.

    Article  CAS  PubMed  Google Scholar 

  29. Goyanes A, Buanz AB, Hatton GB, Gaisford S, Basit AW. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm. 2015;89:157–62. https://doi.org/10.1016/j.ejpb.2014.12.003.

    Article  CAS  PubMed  Google Scholar 

  30. Singpanna K, Charoenying T, Patrojanasophon P, Rojanarata T, Sukma M, Opanasopit P. Fabrication of a floating device of domperidone tablets using 3D-printing technologies. Key Eng Mater. 2020;859:289–94. https://doi.org/10.4028/www.scientific.net/KEM.859.289.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the Commission of Higher Education (Thailand), the Thailand Research Funds through the Royal Golden Jubilee Ph.D. Program (Grant No.PHD/0022/2560), and the Research Team Promotion Grant (RTA6180003) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praneet Opanasopit.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charoenying, T., Patrojanasophon, P., Ngawhirunpat, T. et al. Design and Optimization of 3D-Printed Gastroretentive Floating Devices by Central Composite Design. AAPS PharmSciTech 22, 197 (2021). https://doi.org/10.1208/s12249-021-02053-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02053-3

KEY WORDS

Navigation