Skip to main content

Advertisement

Log in

Ocular Distribution of Papaverine Using Non-aqueous Vehicles

  • Research Article
  • Theme: Ocular Drug Delivery and Ophthalmic Formulations
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Papaverine, a poorly soluble opium alkaloid, has recently been shown to reduce retinal inflammation due to which it may have therapeutic application in the management of Leber’s hereditary optic neuropathy. In this study, papaverine eyedrops based on medium chain triglycerides were prepared and the effect of diethyl glycol monoethyl ether (DGME) on their ocular distribution was evaluated using an ex vivo porcine eye model. The route of drug penetration was also studied by orienting the eye to expose either only the cornea or the sclera to the formulation. Furthermore, in vivo studies were performed to confirm ocular tolerability and evaluate ocular drug distribution. Our results showed increased papaverine concentrations in the cornea and sclera in the presence of DGME but with a slight reduction in the retina-choroid (RC) drug concentration when administered via the corneal route, suggesting that DGME enhances drug accumulation in the anterior ocular tissues but with little effect on posterior drug delivery. In vivo, the papaverine eyedrop with DGME showed good ocular tolerability with the highest drug concentration being observed in the cornea (1.53 ± 0.28 μg/g of tissue), followed by the conjunctiva (0.74 ± 0.18 μg/g) and sclera (0.25 ± 0.06 μg/g), respectively. However, no drug was detected in the RC, vitreous humor or plasma. Overall, this study highlighted that DGME influences ocular distribution and accumulation of papaverine. Moreover, results suggest that for hydrophobic drugs dissolved in hydrophobic non-aqueous vehicles, transcorneal penetration via the transuveal pathway may be the predominant route for drug penetration to posterior ocular tissues.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Triner L, Vulliemoz Y, Schwartz I, Nahas GG. Cyclic phosphodiesterase activity and the action of papaverine. Biochem Biophys Res Commun. 1970;40(1):64–9.

    Article  CAS  Google Scholar 

  2. Resch H, Weigert G, Karl K, Pemp B, Garhofer G, Schmetterer L. Effect of systemic moxaverine on ocular blood flow in humans. Acta Ophthalmol. 2009;87(7):731–5.

    Article  CAS  Google Scholar 

  3. Pemp B, Garhofer G, Lasta M, Schmidl D, Wolzt M, Schmetterer L. The effects of moxaverine on ocular blood flow in patients with age-related macular degeneration or primary open angle glaucoma and in healthy control subjects. Acta Ophthalmol. 2012;90(2):139–45.

    Article  Google Scholar 

  4. Lee Y-Y, Park J-S, Leem Y-H, Park J-E, Kim D-Y, Choi Y-H, et al. The phosphodiesterase 10 inhibitor papaverine exerts anti-inflammatory and neuroprotective effects via the PKA signaling pathway in neuroinflammation and Parkinson’s disease mouse models. J Neuroinflamm. 2019;16(1):246.

    Article  CAS  Google Scholar 

  5. Yu AK, Datta S, McMackin MZ, Cortopassi GA. Rescue of cell death and inflammation of a mouse model of complex 1-mediated vision loss by repurposed drug molecules. Hum Mol Genet. 2017;26(24):4929–36.

    Article  CAS  Google Scholar 

  6. Yu AK, Song L, Murray KD, van der List D, Sun C, Shen Y, et al. Mitochondrial complex I deficiency leads to inflammation and retinal ganglion cell death in the Ndufs4 mouse. Hum Mol Genet. 2015;24(10):2848–60.

    Article  CAS  Google Scholar 

  7. Datta S, Tomilov A, Cortopassi G. Identification of small molecules that improve ATP synthesis defects conferred by Leber’s hereditary optic neuropathy mutations. Mitochondrion. 2016;30:177–86.

    Article  CAS  Google Scholar 

  8. Ahmed I. The noncorneal route in ocular drug delivery. In: Mitra AK, editor. Ophthalmic drug delivery systems. New York: Marcel Dekker; 2003. p. 335–63.

    Chapter  Google Scholar 

  9. Bodor N, Buchwald P. Ophthalmic drug design based on the metabolic activity of the eye: soft drugs and chemical delivery systems. AAPS J. 2005;7(4):E820–E33.

    Article  CAS  Google Scholar 

  10. Maurice DM, Mishima S. Ocular pharmacokinetics. In: Sears ML, editor. Pharmacology of the eye. Berlin: Springer Berlin Heidelberg; 1984. p. 19–116.

    Chapter  Google Scholar 

  11. Maurice DM. Drug delivery to the posterior segment from drops. Surv Ophthalmol. 2002;47(Suppl 1):S41–52.

    Article  Google Scholar 

  12. Gomes JAP, Azar DT, Baudouin C, Efron N, Hirayama M, Horwath-Winter J, et al. TFOS DEWS II iatrogenic report. Ocul Surf. 2017;15(3):511–38.

    Article  Google Scholar 

  13. Ghate D, Edelhauser HF. Barriers to glaucoma drug delivery. J Glaucoma. 2008;17(2):147–56.

    Article  Google Scholar 

  14. Ishibashi T, Yokoi N, Kinoshita S. Comparison of the short-term effects on the human corneal surface of topical timolol maleate with and without benzalkonium chloride. J Glaucoma. 2003;12(6):486–90.

    Article  Google Scholar 

  15. Datta S, Baudouin C, Brignole-Baudouin F, Denoyer A, Cortopassi GA. The eye drop preservative benzalkonium chloride potently induces mitochondrial dysfunction and preferentially affects LHON mutant cells. Invest Ophthalmol Vis Sci. 2017;58(4):2406–12.

    Article  CAS  Google Scholar 

  16. Agarwal P, Khun D, Krösser S, Eickhoff K, Wells FS, Willmott GR, et al. Preclinical studies evaluating the effect of semifluorinated alkanes on ocular surface and tear fluid dynamics. Ocul Surf. 2019.

  17. Agarwal P, Scherer D, Günther B, Rupenthal ID. Semifluorinated alkane based systems for enhanced corneal penetration of poorly soluble drugs. Int J Pharm. 2018;538(1):119–29.

    Article  CAS  Google Scholar 

  18. Osborne DW, Musakhanian J. Skin penetration and permeation properties of Transcutol®—neat or diluted mixtures. AAPS PharmSciTech. 2018;19(8):3512–33.

    Article  CAS  Google Scholar 

  19. Box K, Comer J, Huque F. (2006), Correlations between PAMPA permeability and log P. In: Pharmacokinetic profiling in drug research. p. 243-57.

  20. Agarwal P, Craig JP, Krösser S, Eickhoff K, Swift S, Rupenthal ID. Topical semifluorinated alkane-based azithromycin suspension for the management of ocular infections. Eur J Pharm Biopharm. 2019;142:83–91.

    Article  CAS  Google Scholar 

  21. Griffith JF, Nixon GA, Bruce RD, Reer PJ, Bannan EA. Dose-response studies with chemical irritants in the albino rabbit eye as a basis for selecting optimum testing conditions for predicting hazard to the human eye. Top Catal. 1980;55(3):501–13.

    CAS  Google Scholar 

  22. Draize JH, Woodard G, Calvery HO. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther. 1944;82(3):377–90.

    CAS  Google Scholar 

  23. Liu Z, Nie S, Guo H, Pan W, Li J. Effects of Transcutol P on the corneal permeability of drugs and evaluation of its ocular irritation of rabbit eyes. J Pharm Pharmacol. 2006;58(1):45–50.

    Article  CAS  Google Scholar 

  24. Li X, Nie S-F, Kong J, Li N, Ju C-Y, Pan W-S. A controlled-release ocular delivery system for ibuprofen based on nanostructured lipid carriers. Int J Pharm. 2008;363(1):177–82.

    Article  CAS  Google Scholar 

  25. Varela-Fernández R, Díaz-Tomé V, Luaces-Rodríguez A, Conde-Penedo A, García-Otero X, Luzardo-Álvarez A, et al. Drug delivery to the posterior segment of the eye: biopharmaceutic and pharmacokinetic considerations. Pharmaceutics. 2020;12(3):269.

    Article  Google Scholar 

  26. Ghorbanzade M, Fatemi MH, Karimpour M, Andersson PL. Quantitative and qualitative prediction of corneal permeability for drug-like compounds. Talanta. 2011;85(5):2686–94.

    Article  CAS  Google Scholar 

  27. Asano N, Wiseman JM, Tsuji F, Kawazu K. Limited azithromycin localization to rabbit meibomian glands revealed by LC-MS-based bioanalysis and DESI imaging. Biol Pharm Bull. 2017;40(9):1586–9.

    Article  CAS  Google Scholar 

  28. Jakubiak P, Cantrill C, Urtti A, Alvarez-Sánchez R. Establishment of an in vitro–in vivo correlation for melanin binding and the extension of the ocular half-life of small-molecule drugs. Mol Pharm. 2019;16(12):4890–901.

    Article  CAS  Google Scholar 

  29. Shaaya AN, Kraus C, Bauman DH, Ritschel WA. Pharmacokinetics and bioavailability of papaverine HCl after intravenous, intracorporeal and penis topical administration in beagle dogs. J Ocul Pharmacol Ther. 1992;14(5):373–8.

    CAS  Google Scholar 

  30. Kraus C, Shaaya A, Ulmer J, Hutchings D, Menon A, Sakr A, et al. Pharmacokinetics and bioavailability of papaverine HCl following intravenous, peroral, rectal, vaginal, topical and buccal administration in beagle dogs. Biopharm Drug Dispos. 1991;12(7):537–46.

    Article  CAS  Google Scholar 

  31. Wen MM, El-kamel A, Khalil S. Systemic enhancement of papaverine transdermal gel for erectile dysfunction. Drug Dev Ind Pharm. 2011;38:912–22.

    Article  Google Scholar 

  32. Huang D, Chen YS, Rupenthal ID. Overcoming ocular drug delivery barriers through the use of physical forces. Adv Drug Deliv Rev. 2018;126:96–112.

    Article  CAS  Google Scholar 

  33. Hamalainen KM, Kananen K, Auriola S, Kontturi K, Urtti A. Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva, and sclera. Invest Ophthalmol Vis Sci. 1997;38(3):627–34.

    CAS  PubMed  Google Scholar 

  34. Agrahari V, Mandal A, Agrahari V, Trinh HM, Joseph M, Ray A, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res. 2016;6(6):735–54.

    Article  CAS  Google Scholar 

  35. Panchagnula R, Ritschel WA. Development and evaluation of an intracutaneous depot formulation of corticosteroids using Transcutol as a cosolvent: in-vitro, ex-vivo and in-vivo rat studies. J Pharm Pharmacol. 1991;43(9):609–14.

    Article  CAS  Google Scholar 

  36. Becker U, Ehrhardt C, Schaefer UF, Gukasyan HJ, Kim K-J, Lee VH, et al. Tissue distribution of moxaverine–hydrochloride in the rabbit eye and plasma. J Ocul Pharmacol Ther. 2005;21(3):210–6.

    Article  CAS  Google Scholar 

  37. Shibata Y, Tanaka Y, Tomita T, Taogoshi T, Kimura Y, Chikama T, et al. Evaluation of corneal damage caused by iodine preparations using human corneal epithelial cells. Jpn J Ophthalmol. 2014;58(6):522–7.

    Article  CAS  Google Scholar 

  38. Kuwano M, Ibuki H, Morikawa N, Ota A, Kawashima Y. Cyclosporine A formulation affects its ocular distribution in rabbits. Pharm Res. 2002;19(1):108–11.

    Article  CAS  Google Scholar 

  39. Earla R, Boddu SH, Cholkar K, Hariharan S, Jwala J, Mitra AK. Development and validation of a fast and sensitive bioanalytical method for the quantitative determination of glucocorticoids--quantitative measurement of dexamethasone in rabbit ocular matrices by liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal. 2010;52(4):525–33.

    Article  CAS  Google Scholar 

  40. Cholkar K, Gilger BC, Mitra AK. Topical, aqueous, clear cyclosporine formulation design for anterior and posterior ocular delivery. Transl Vis Sci Techn. 2015;4(3):1.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Tarnagulla Ventures Pty. Ltd. for funding this study. IDR’s directorship is provided by the Buchanan Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilva Dana Rupenthal.

Additional information

Guest Editors: Qingguo Xu and Iok-Hou Pang

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, P., Behera, S. & Rupenthal, I.D. Ocular Distribution of Papaverine Using Non-aqueous Vehicles. AAPS PharmSciTech 22, 160 (2021). https://doi.org/10.1208/s12249-021-02050-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02050-6

KEY WORDS

Navigation