Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) has demonstrated notable clinical activity in cancer immunotherapy, but it is limited by systemic toxicities, poor bioavailability, rapid clearance, and instability in vivo. Nanoparticles (NPs) may overcome these limitations and provide a mechanism for passive targeting of tumors. This study aimed to develop GM-CSF-loaded PLGA/PLGA-PEG NPs and evaluate them in vitro as a potential candidate for in vivo administration. NPs were created by a phase-separation technique that did not require toxic/protein-denaturing solvents or harsh agitation techniques and encapsulated GM-CSF in a more stable precipitated form. NP sizes were within 200 nm for enhanced permeability and retention (EPR) effect with negative zeta potentials, spherical morphology, and high entrapment efficiencies. The optimal formulation was identified by sustained release of approximately 70% of loaded GM-CSF over 24 h, alongside an average size of 143 ± 35 nm and entrapment efficiency of 84 ± 5%. These NPs were successfully freeze-dried in 5% (w/v) hydroxypropyl-β-cyclodextrin for long-term storage and further characterized. Bioactivity of released GM-CSF was determined by observing GM-CSF receptor activation on murine monocytes and remained fully intact. NPs were not cytotoxic to murine bone marrow-derived macrophages (BMDMs) at concentrations up to 1 mg/mL as determined by MTT and trypan blue exclusion assays. Lastly, NP components generated no significant transcription of inflammation-regulating genes from BMDMs compared to IFNγ+LPS “M1” controls. This report lays the preliminary groundwork to validate in vivo studies with GM-CSF-loaded PLGA/PEG-PLGA NPs for tumor immunomodulation. Overall, these data suggest that in vivo delivery will be well tolerated.
This is a preview of subscription content, access via your institution.






References
Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med. 1992;176(6):1693–702. https://doi.org/10.1084/jem.176.6.1693.
Metcalf D. Cell-cell signalling in the regulation of blood cell formation and function. Immunol Cell Biol. 1998;76(5):441–7. https://doi.org/10.1046/j.1440-1711.1998.00761.x.
Arellano M, Lonial S. Clinical uses of GM-CSF, a critical appraisal and update. Biologics. 2008;2(1):13–27.
Sanofi Pharmaceuticals. Sargramostim: Package Insert. U.S. Food and Drug Administration. 2017. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/103362s5237lbl.pdf. Accessed 20 Nov 2020.
Burgess AW, Metcalf D. The nature and action of granulocyte-macrophage colony stimulating factors. Blood. 1980;56(6):947–58.
Metcalf D. The granulocyte-macrophage colony-stimulating factors. Science. 1985;229(4708):16–22. https://doi.org/10.1126/science.2990035.
Zhan Y, Lew AM, Chopin M. The pleiotropic effects of the GM-CSF rheostat on myeloid cell differentiation and function: more than a numbers game. Front Immunol. 2019;10:2679. https://doi.org/10.3389/fimmu.2019.02679.
R OD. An update on GM-CSF and its potential role in melanoma management. Melanoma Manag. 2020;7(3):MMT49. https://doi.org/10.2217/mmt-2020-0011.
Kaufman HL, Ruby CE, Hughes T, Slingluff CL Jr. Current status of granulocyte-macrophage colony-stimulating factor in the immunotherapy of melanoma. J Immunother Cancer. 2014;2:11. https://doi.org/10.1186/2051-1426-2-11.
Hoeller C, Michielin O, Ascierto PA, Szabo Z, Blank CU. Systematic review of the use of granulocyte-macrophage colony-stimulating factor in patients with advanced melanoma. Cancer Immunol Immunother. 2016;65(9):1015–34. https://doi.org/10.1007/s00262-016-1860-3.
Quezada SA, Peggs KS, Curran MA, Allison JP. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J Clin Invest. 2006;116(7):1935–45. https://doi.org/10.1172/JCI27745.
Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front Oncol. 2018;8(86). https://doi.org/10.3389/fonc.2018.00086.
Luke JJ, Donahue H, Nishino M, Giobbie-Hurder A, Davis M, Bailey N, et al. Single institution experience of ipilimumab 3 mg/kg with sargramostim (GM-CSF) in metastatic melanoma. Cancer Immunol Res. 2015;3(9):986–91. https://doi.org/10.1158/2326-6066.CIR-15-0066.
Li B, VanRoey M, Wang C, Chen T-hT, Korman A, Jooss K. Anti–programmed death-1 synergizes with granulocyte macrophage colony-stimulating factor–secreting tumor cell immunotherapy providing therapeutic benefit to mice with established tumors. Clin Cancer Res. 2009;15(5):1623. https://doi.org/10.1158/1078-0432.CCR-08-1825.
Pisal DS, Kosloski MP, Balu-Iyer SV. Delivery of therapeutic proteins. J Pharm Sci. 2010;99(6):2557–75. https://doi.org/10.1002/jps.22054.
Greish K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol Biol. 2010;624:25–37. https://doi.org/10.1007/978-1-60761-609-2_3.
Soundararajan A, Bao A, Phillips WT, Perez R 3rd, Goins BA. [(186)Re]Liposomal doxorubicin (Doxil): in vitro stability, pharmacokinetics, imaging and biodistribution in a head and neck squamous cell carcinoma xenograft model. Nucl Med Biol. 2009;36(5):515–24. https://doi.org/10.1016/j.nucmedbio.2009.02.004.
Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin Pharmacokinet. 2003;42(5):419–36. https://doi.org/10.2165/00003088-200342050-00002.
Cohen-Sela E, Chorny M, Koroukhov N, Danenberg HD, Golomb G. A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J Control Release. 2009;133(2):90–5. https://doi.org/10.1016/j.jconrel.2008.09.073.
Grabowski N, Hillaireau H, Vergnaud J, Tsapis N, Pallardy M, Kerdine-Romer S, et al. Surface coating mediates the toxicity of polymeric nanoparticles towards human-like macrophages. Int J Pharm. 2015;482(1-2):75–83. https://doi.org/10.1016/j.ijpharm.2014.11.042.
Dudeck O, Jordan O, Hoffmann KT, Okuducu AF, Tesmer K, Kreuzer-Nagy T, et al. Organic solvents as vehicles for precipitating liquid embolics: a comparative angiotoxicity study with superselective injections of swine rete mirabile. AJNR. 2006;27(9):1900–6.
Bilati U, Allémann E, Doelker E. Strategic approaches for overcoming peptide and protein instability within biodegradable nano- and microparticles. Eur J Pharm Biopharm. 2005;59(3):375–88. https://doi.org/10.1016/j.ejpb.2004.10.006.
Haji Mansor M, Najberg M, Contini A, Alvarez-Lorenzo C, Garcion E, Jerome C, et al. Development of a non-toxic and non-denaturing formulation process for encapsulation of SDF-1a into PLGA/PEG-PLGA nanoparticles to achieve sustained release. Eur J Pharm Biopharm. 2018;125:38–50.
Giteau A, Venier-Julienne MC, Marchal S, Courthaudon JL, Sergent M, Montero-Menei C, et al. Reversible protein precipitation to ensure stability during encapsulation within PLGA microspheres. Eur J Pharm Biopharm. 2008;70(1):127–36. https://doi.org/10.1016/j.ejpb.2008.03.006.
Lehtonen A, Matikainen S, Miettinen M, Julkunen I. Granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced STAT5 activation and target-gene expression during human monocyte/macrophage differentiation. J Leukoc Biol. 2002;71(3):511–9.
Eubank TD, Roberts RD, Khan M, Curry JM, Nuovo GJ, Kuppusamy P, et al. Granulocyte macrophage colony-stimulating factor inhibits breast cancer growth and metastasis by invoking an anti-angiogenic program in tumor-educated macrophages. Cancer Res. 2009;69(5):2133–40. https://doi.org/10.1158/0008-5472.Can-08-1405.
Sharma N, Madan P, Lin S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: a co-surfactant study. Asian J Pharm Sci. 2016;11(3):404–16. https://doi.org/10.1016/j.ajps.2015.09.004.
Krishnamachari Y, Madan P, Lin S. Development of pH- and time-dependent oral microparticles to optimize budesonide delivery to ileum and colon. Int J Pharm. 2007;338(1):238–47. https://doi.org/10.1016/j.ijpharm.2007.02.015.
Huang W, Tsui CP, Tang CY, Gu L. Effects of compositional tailoring on drug delivery behaviours of silica xerogel/polymer core-shell composite nanoparticles. Sci Rep. 2018;8(1):13002. https://doi.org/10.1038/s41598-018-31070-9.
Abdelwahed W, Degobert G, Fessi H. Investigation of nanocapsules stabilization by amorphous excipients during freeze-drying and storage. Eur J Pharm Biopharm. 2006;63(2):87–94. https://doi.org/10.1016/j.ejpb.2006.01.015.
Vega E, Egea MA, Calpena AC, Espina M, García ML. Role of hydroxypropyl-β-cyclodextrin on freeze-dried and gamma-irradiated PLGA and PLGA-PEG diblock copolymer nanospheres for ophthalmic flurbiprofen delivery. Int J Nanomedicine. 2012;7:1357–71. https://doi.org/10.2147/ijn.S28481.
Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev. 2006;58(15):1688–713. https://doi.org/10.1016/j.addr.2006.09.017.
Hamilton JA. GM-CSF-dependent inflammatory pathways. Front Immunol. 2019;10(2055). https://doi.org/10.3389/fimmu.2019.02055.
Na YR, Gu GJ, Jung D, Kim YW, Na J, Woo JS, et al. GM-CSF induces inflammatory macrophages by regulating glycolysis and lipid metabolism. J Immunol. 2016;197(10):4101–9. https://doi.org/10.4049/jimmunol.1600745.
ISO 10993-5:2009 biological evaluation of medical devices. Part 5: tests for in vitro cytotoxicity. International Organization for Standardization; Geneva Shwio.
Pettit DK LJ, Huang WJ, Pankey SC, Nightlinger NS, Lynch DH, Schuh JA, Morrissey PJ, Gombotz WR. Characterization of poly(glycolide-co-D,L-lactide/poly(D,L-glycolide) microspheres for controlled release of GM-CSF. Pharm Res 1997;14(10):1422–30
Hill HC, Conway TF, Sabel MS, Jong YS, Mathiowitz E, Bankert RB, et al. Cancer immunotherapy with interleukin 12 and granulocyte-macrophage colony-stimulating factor-encapsulated microspheres. Cancer Res. 2002;62(24):7254–63.
Vanitha S, Goswami U, Chaubey N, Ghosh SS, Sanpui P. Functional characterization of recombinant human granulocyte colony stimulating factor (hGMCSF) immobilized onto silica nanoparticles. Biotechnol Lett. 2016;38(2):243–9. https://doi.org/10.1007/s10529-015-1984-0.
Anderson PM, Hanson DC, Hasz DE, Halet MR, Blazar BR, Ochoa AC. Cytokines in liposomes: preliminary studies with IL-1, IL-2, IL-6, GM-CSF and interferon-gamma. Cytokine. 1994;6(1):92–101.
Kedar E, Palgi O, Golod G, Babai I, Barenholz Y. Delivery of cytokines by liposomes. III. Liposome-encapsulated GM-CSF and TNF-alpha show improved pharmacokinetics and biological activity and reduced toxicity in mice. J Immunother. 1997;20(3):180–93. https://doi.org/10.1097/00002371-199705000-00003.
Babai I, Barenholz Y, Zakay-Rones Z, Greenbaum E, Samira S, Hayon I, et al. A novel liposomal influenza vaccine (INFLUSOME-VAC) containing hemagglutinin-neuraminidase and IL-2 or GM-CSF induces protective anti-neuraminidase antibodies cross-reacting with a wide spectrum of influenza A viral strains. Vaccine. 2001;20(3-4):505–15. https://doi.org/10.1016/s0264-410x(01)00326-7.
Duong HTT, Thambi T, Yin Y, Kim SH, Nguyen TL, Phan VHG, et al. Degradation-regulated architecture of injectable smart hydrogels enhances humoral immune response and potentiates antitumor activity in human lung carcinoma. Biomaterials. 2020;230:119599. https://doi.org/10.1016/j.biomaterials.2019.119599.
Mukherjee BSK, Pattnaik G, Ghosh S. Preparation, characterization and in-vitro evaluation of sustained release protein-loaded nanoparticles based on biodegradable polymers. Int J Nanomedicine. 2008;3(4):487–96.
Feczkó T, Tóth J, Dósa G, Gyenis J. Optimization of protein encapsulation in PLGA nanoparticles. Chem Eng Process. 2011;50(8):757–65. https://doi.org/10.1016/j.cep.2011.06.008.
Jiang X, Lin H, Jiang D, Xu G, Fang X, He L, et al. Co-delivery of VEGF and bFGF via a PLGA nanoparticle-modified BAM for effective contracture inhibition of regenerated bladder tissue in rabbits. Sci Rep. 2016;6(1):20784. https://doi.org/10.1038/srep20784.
European Medicines Agency. International Conference on Harmonization (ICH) guidelines Q3C (R6) on impurities: guidelines for residual solvents. 2019. https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use_en-33.pdf. Accessed 22 Nov 2020.
Yang A, Yang L, Liu W, Li Z, Xu H, Yang X. Tumor necrosis factor alpha blocking peptide loaded PEG-PLGA nanoparticles: preparation and in vitro evaluation. Int J Pharm. 2007;331(1):123–32. https://doi.org/10.1016/j.ijpharm.2006.09.015.
Coleman J, Lowman A. Biodegradable nanoparticles for protein delivery: analysis of preparation conditions on particle morphology and protein loading, activity and sustained release properties. J Biomater Sci Polym Ed. 2012;23(9):1129–51. https://doi.org/10.1163/092050611x576648.
Bilati U, Allémann E, Doelker E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci. 2005;24(1):67–75. https://doi.org/10.1016/j.ejps.2004.09.011.
Swed ACT, Fleury F, Boury F. Protein encapsulation into PLGA nanoparticles by a novel phase separation method using non-toxic solvents. J Nanomed Nanotechnol. 2014;5(6):241.
Boongird A, Nasongkla N, Hongeng S, Sukdawong N, Sa-Nguanruang W, Larbcharoensub N. Biocompatibility study of glycofurol in rat brains. Exp Biol Med. 2011;236(1):77–83. https://doi.org/10.1258/ebm.2010.010219.
Morille M, Van-Thanh T, Garric X, Cayon J, Coudane J, Noël D, et al. New PLGA-P188-PLGA matrix enhances TGF-β3 release from pharmacologically active microcarriers and promotes chondrogenesis of mesenchymal stem cells. J Control Release. 2013;170(1):99–110. https://doi.org/10.1016/j.jconrel.2013.04.017.
Swed A, Cordonnier T, Dénarnaud A, Boyer C, Guicheux J, Weiss P, et al. Sustained release of TGF-β1 from biodegradable microparticles prepared by a new green process in CO2 medium. Int J Pharm. 2015;493(1-2):357–65. https://doi.org/10.1016/j.ijpharm.2015.07.043.
Kandalam S, Sindji L, Delcroix GJ, Violet F, Garric X, André EM, et al. Pharmacologically active microcarriers delivering BDNF within a hydrogel: novel strategy for human bone marrow-derived stem cells neural/neuronal differentiation guidance and therapeutic secretome enhancement. Acta Biomater. 2017;49:167–80. https://doi.org/10.1016/j.actbio.2016.11.030.
Filipe V, Hawe A, Jiskoot W. Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010;27(5):796–810. https://doi.org/10.1007/s11095-010-0073-2.
Gross J, Sayle S, Karow AR, Bakowsky U, Garidel P. Nanoparticle tracking analysis of particle size and concentration detection in suspensions of polymer and protein samples: Influence of experimental and data evaluation parameters. Eur J Pharm Biopharm. 2016;104:30–41. https://doi.org/10.1016/j.ejpb.2016.04.013.
Haggag Y, Abdel-Wahab Y, Ojo O, Osman M, El-Gizawy S, El-Tanani M, et al. Preparation and in vivo evaluation of insulin-loaded biodegradable nanoparticles prepared from diblock copolymers of PLGA and PEG. Int J Pharm. 2016;499(1-2):236–46. https://doi.org/10.1016/j.ijpharm.2015.12.063.
Beletsi A, Panagi Z, Avgoustakis K. Biodistribution properties of nanoparticles based on mixtures of PLGA with PLGA–PEG diblock copolymers. Int J Pharm. 2005;298(1):233–41. https://doi.org/10.1016/j.ijpharm.2005.03.024.
Wei Q, Wei W, Tian R, Wang L-y, Su Z-G, Ma G-H. Preparation of uniform-sized PELA microspheres with high encapsulation efficiency of antigen by premix membrane emulsification. J Colloid Interface Sci. 2008;323(2):267–73. https://doi.org/10.1016/j.jcis.2008.04.058.
Santander-Ortega MJ, Csaba N, González L, Bastos-González D, Ortega-Vinuesa JL, Alonso MJ. Protein-loaded PLGA–PEO blend nanoparticles: encapsulation, release and degradation characteristics. Colloid Polym Sci. 2010;288(2):141–50. https://doi.org/10.1007/s00396-009-2131-z.
Govender T, Stolnik S, Garnett MC, Illum L, Davis SS. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release. 1999;57(2):171–85. https://doi.org/10.1016/s0168-3659(98)00116-3.
Tran MK, Swed A, Boury F. Preparation of polymeric particles in CO(2) medium using non-toxic solvents: formulation and comparisons with a phase separation method. Eur J Pharm Biopharm. 2012;82(3):498–507. https://doi.org/10.1016/j.ejpb.2012.08.005.
Swed A, Cordonnier T, Denarnaud A, Boyer C, Guicheux J, Weiss P, et al. Sustained release of TGF-beta1 from biodegradable microparticles prepared by a new green process in CO2 medium. Int J Pharm. 2015;493(1-2):357–65. https://doi.org/10.1016/j.ijpharm.2015.07.043.
White LJ, Kirby GTS, Cox HC, Qodratnama R, Qutachi O, Rose FRAJ, et al. Accelerating protein release from microparticles for regenerative medicine applications. Mater Sci Eng. 2013;33(5):2578–83. https://doi.org/10.1016/j.msec.2013.02.020.
Li Y, Pei Y, Zhang X, Gu Z, Zhou Z, Yuan W, et al. PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. J Control Release. 2001;71(2):203–11. https://doi.org/10.1016/s0168-3659(01)00218-8.
Giteau A, Venier-Julienne MC, Aubert-Pouëssel A, Benoit JP. How to achieve sustained and complete protein release from PLGA-based microparticles? Int J Pharm. 2008;350(1-2):14–26. https://doi.org/10.1016/j.ijpharm.2007.11.012.
Pakulska MM, Elliott Donaghue I, Obermeyer JM, Tuladhar A, McLaughlin CK, Shendruk TN, et al. Encapsulation-free controlled release: electrostatic adsorption eliminates the need for protein encapsulation in PLGA nanoparticles. Sci Adv. 2016;2(5):e1600519. https://doi.org/10.1126/sciadv.1600519.
Crotts G, Sah H, Park TG. Adsorption determines in-vitro protein release rate from biodegradable microspheres: quantitative analysis of surface area during degradation. J Control Release. 1997;47(1):101–11. https://doi.org/10.1016/S0168-3659(96)01624-0.
Wei Y, Wang YX, Wang W, Ho SV, Qi F, Ma GH, et al. Microcosmic mechanisms for protein incomplete release and stability of various amphiphilic mPEG-PLA microspheres. Langmuir. 2012;28(39):13984–92. https://doi.org/10.1021/la3017112.
Buske J, König C, Bassarab S, Lamprecht A, Mühlau S, Wagner KG. Influence of PEG in PEG–PLGA microspheres on particle properties and protein release. Eur J Pharm Biopharm. 2012;81(1):57–63. https://doi.org/10.1016/j.ejpb.2012.01.009.
Ratanji KD, Derrick JP, Dearman RJ, Kimber I. Immunogenicity of therapeutic proteins: influence of aggregation. J Immunotoxicol. 2014;11(2):99–109. https://doi.org/10.3109/1547691x.2013.821564.
Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99(Pt A):28–51. https://doi.org/10.1016/j.addr.2015.09.012.
Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 1990;268(1):235–7. https://doi.org/10.1016/0014-5793(90)81016-h.
Mori A, Klibanov AL, Torchilin VP, Huang L. Influence of the steric barrier activity of amphipathic poly(ethyleneglycol) and ganglioside GM1 on the circulation time of liposomes and on the target binding of immunoliposomes in vivo. FEBS Lett. 1991;284(2):263–6. https://doi.org/10.1016/0014-5793(91)80699-4.
Gref R, Lück M, Quellec P, Marchand M, Dellacherie E, Harnisch S, et al. 'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B: Biointerfaces. 2000;18(3-4):301–13. https://doi.org/10.1016/s0927-7765(99)00156-3.
Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51. https://doi.org/10.1038/nbt.3330.
Maupas C, Moulari B, Béduneau A, Lamprecht A, Pellequer Y. Surfactant dependent toxicity of lipid nanocapsules in HaCaT cells. Int J Pharm. 2011;411(1):136–41. https://doi.org/10.1016/j.ijpharm.2011.03.056.
Le Roux G, Moche H, Nieto A, Benoit J-P, Nesslany F, Lagarce F. Cytotoxicity and genotoxicity of lipid nanocapsules. Toxicol in Vitro. 2017;41:189–99. https://doi.org/10.1016/j.tiv.2017.03.007.
Pallardy MJ, Turbica I, Biola-Vidamment A. Why the immune system should be concerned by nanomaterials? Front Immunol. 2017;8(544). https://doi.org/10.3389/fimmu.2017.00544.
Składanowski M, Golinska P, Rudnicka K, Dahm H, Rai M. Evaluation of cytotoxicity, immune compatibility and antibacterial activity of biogenic silver nanoparticles. Med Microbiol Immunol. 2016;205(6):603–13. https://doi.org/10.1007/s00430-016-0477-7.
Acknowledgements
This work was also supported by WVU Flow Cytometry and Single Cell Core and the following grants: TME CoBRE GM121322, S10 equipment grant #OD016165, Stroke CoBRE GM109098, and WV-CTSI grant #GM103434. NM is supported by Cell & Molecular Biology and Biomedical Engineering (CBTP) National Institute of General Medical Sciences (NIGMS) T32 training grant (T32GM133369). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We acknowledge the use of the WVU Shared Research Facilities and thank Dr. Marcela Redigolo for her collaboration in obtaining SEM images. We also acknowledge Tasneem Arsiwala and Dr. Marieta Gencheva for insightful discussions, and Kelly Monaghan for assistance with the pSTAT5 staining protocol.
Funding
This work was supported by NIH Grants (USA): R01CA194013 and R01CA192064 (to TDE), R00EB023990 (to BD), R21EB02855301A1 (to BD), WVCTSI Grant U54GM104942 (West Virginia State Startup Funds to TDE), WVCTSI/WVCI Open Award (to TDE), and P20GM103434 (WV-INBRE).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of Interest
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
ESM 1
(DOCX 8515 kb)
Rights and permissions
About this article
Cite this article
Mihalik, N.E., Wen, S., Driesschaert, B. et al. Formulation and In Vitro Characterization of PLGA/PLGA-PEG Nanoparticles Loaded with Murine Granulocyte-Macrophage Colony-Stimulating Factor. AAPS PharmSciTech 22, 191 (2021). https://doi.org/10.1208/s12249-021-02049-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1208/s12249-021-02049-z
KEY WORDS
- PLGA-PEG
- GM-CSF
- nanoparticles
- phase separation
- macrophages