Skip to main content
Log in

Design and In Vitro Evaluation of a Slow-Release Intraocular Implant of Betamethasone

  • Research Article
  • Theme: Ocular Drug Delivery and Ophthalmic Formulations
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Posterior eye diseases are a common cause of vision problems in developing countries, which have encouraged the development of new treatment models for these degenerative diseases. Intraocular implants are one of the drug delivery systems to the posterior region of the eye. Using these implants, the blood-eye barrier can be bypassed; the complications caused by repeated in vitro administrations can be eliminated, and smaller amounts of the drug would be used during the treatment process. Meanwhile, biodegradable implants have received more attention due to their biodegradable structure and the lack of need for re-surgery to remove the rest of the system from the eye. The aim of this study is to employ biodegradable implants composed of polyethylene glycol (PEG) and 3-hydroxybutyrate-co-3-hydroxyvalerat (PHBV) to deliver betamethasone to the back of the eye in the treatment of retinopathy. PHBV polymer has been selected as the main polymer with a certain ratio of drug to polymer for fabrication of enamel and different amounts of PEG with three molecular weights used as pore generators to control drug release over a period of time. Based on the analysis of the results of differential scanning calorimetry (DSC) and FTIR spectroscopy, none of the polymers were degraded in the temperature range of the manufacturing process, and among betamethasone derivatives, the best option for implant preparation is the use of its basic form. Drug release studies over a period of three months showed that implants containing PHBV HV2% and PEG 6000 had a more appropriate release profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sabanayagam C, Banu R, Chee ML, Lee R, Wang YX, Tan G, et al. Incidence and progression of diabetic retinopathy: a systematic review. Lancet Diab Endocrinol. 2019;7(2):140–9.

    Article  Google Scholar 

  2. Heckenlively JR, Ferreyra HA, editors. Autoimmune retinopathy: a review and summary. Semin Immunopathol. 2008;Springer.

  3. Akram MU, Khalid S, Tariq A, Khan SA, Azam F. Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput Biol Med. 2014;45:161–71.

    Article  Google Scholar 

  4. Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vision. 2015;2(1):1–25.

    Article  Google Scholar 

  5. Ding J, Wong TY. Current epidemiology of diabetic retinopathy and diabetic macular edema. Curr Diab Rep. 2012;12(4):346–54.

    Article  Google Scholar 

  6. Sabanayagam C, Yip W, Ting DS, Tan G, Wong TY. Ten emerging trends in the epidemiology of diabetic retinopathy. Ophthalmic Epidemiol. 2016;23(4):209–22.

    Article  Google Scholar 

  7. Ludwig CA, Chen TA, Hernandez-Boussard T, Moshfeghi AA, Moshfeghi DM. The epidemiology of retinopathy of prematurity in the United States. Ophthalmic Surg Lasers Imaging Retin. 2017;48(7):553–62.

    Article  Google Scholar 

  8. Gupta N, Mansoor S, Sharma A, Sapkal A, Sheth J, Falatoonzadeh P, et al. Diabetic retinopathy and VEGF. Open Ophthalmol J. 2013;7:4–10.

    Article  CAS  Google Scholar 

  9. Hofman P, Blaauwgeers H, Vrensen G, Schlingemann R. Role of VEGF-A in endothelial phenotypic shift in human diabetic retinopathy and VEGF-A-induced retinopathy in monkeys. Ophthalmic Res. 2001;33(3):156–62.

    Article  CAS  Google Scholar 

  10. Ray D, Mishra M, Ralph S, Read I, Davies R, Brenchley P. Association of the VEGF gene with proliferative diabetic retinopathy but not proteinuria in diabetes. Diabetes. 2004;53(3):861–4.

    Article  CAS  Google Scholar 

  11. Schwartz GS, Flynn WH. Fluocinolone acetonide implantable device for diabetic retinopathy. Curr Pharm Biotechnol. 2011;12(3):347–51.

    Article  CAS  Google Scholar 

  12. Wykoff CC. Impact of intravitreal pharmacotherapies including antivascular endothelial growth factor and corticosteroid agents on diabetic retinopathy. Curr Opin Ophthalmol. 2017;28(3):213–8.

    Article  Google Scholar 

  13. Gupta SR, Suhler EB, Rosenbaum JT. The dilemma of central serous retinopathy, a corticosteroid-induced complication, in patients with ocular inflammatory disease. J Rheumatol. 2010;37(9):1973–4.

    Article  Google Scholar 

  14. Jain I, Singh K. Maculopathy a corticosteroid side-effect. Indian J Ophthalmol. 1966;14(6):250.

    CAS  Google Scholar 

  15. Couvreur P. Nanoparticles in drug delivery: past, present and future. Adv Drug Deliv Rev. 2013;65(1):21–3.

    Article  CAS  Google Scholar 

  16. Lang JC. Ocular drug delivery conventional ocular formulations. Adv Drug Deliv Rev. 1995;16(1):39–43.

    Article  CAS  Google Scholar 

  17. Maghsoudnia N, Eftekhari RB, Sohi AN, Zamzami A, Dorkoosh FA. Application of nano-based systems for drug delivery and targeting: a review. J Nanopart Res. 2020;22(8):1–41.

    Article  Google Scholar 

  18. Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov Today. 2008;13(3-4):144–51.

    Article  CAS  Google Scholar 

  19. Eftekhari RB, Maghsoudnia N, Samimi S, Zamzami A, Dorkoosh FA. Co-delivery nanosystems for cancer treatment: a review. Pharm Nanotechnol. 2019;7(2):90–112.

    Article  CAS  Google Scholar 

  20. Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010;12(3):348–60.

    Article  CAS  Google Scholar 

  21. Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: an overview. World J Pharmacol. 2013;2(2):47–64.

    Article  CAS  Google Scholar 

  22. Cholkar K, Vadlapudi AD, Trinh HM, Mitra AK. Compositions, formulation, pharmacology, pharmacokinetics, and toxicity of topical, periocular, and intravitreal ophthalmic drugs. Ocular Pharmacol Toxicol. Springer. 2013;91-118.

  23. Gadek T, Lee D. Topical drug delivery to the back of the eye. Drug Prod Dev Back Eye. Springer. 2011;111-24.

  24. Sampat KM, Garg SJ. Complications of intravitreal injections. Curr Opin Ophthalmol. 2010;21(3):178–83.

    Article  Google Scholar 

  25. Sen HN, Vitale S, Gangaputra SS, Nussenblatt RB, Liesegang TL, Levy-Clarke GA, et al. Periocular corticosteroid injections in uveitis: effects and complications. Ophthalmology. 2014;121(11):2275–86.

    Article  Google Scholar 

  26. Wong VG, Kochinke F. Biocompatible ocular implants. Google Patents; 1995.

  27. Haffner DS, Gille HK, Kalina CR, Cogger JJ. System and method for delivering multiple ocular implants. Google Patents; 2019.

  28. Macoon R, Guerriero T, Chauhan A. Extended release of dexamethasone from oleogel based rods. J Colloid Interface Sci. 2019;555:331–41.

    Article  CAS  Google Scholar 

  29. Macoon R, Robey M, Chauhan A. In Vitro release of hydrophobic drugs by oleogel rods with biocompatible gelators. Eur J Pharm Sci. 2020;152:105413.

    Article  CAS  Google Scholar 

  30. Macoon R, Chauhan A. Ophthalmic delivery of hydrophilic drugs through drug-loaded oleogels. Eur J Pharm Sci. 2020;105634.

  31. Kumar A, Ambiya V, Kapoor G, Arora A. Wandering Ozurdex in eyes with scleral fixated intraocular lens and its management: a report of two cases. J Curr Ophthalmol. 2019;31(3):345–8.

    Article  Google Scholar 

  32. Xu Y, Kim CS, Saylor DM, Koo D. Polymer degradation and drug delivery in PLGA-based drug–polymer applications: a review of experiments and theories. J Biomed Mater Res B Appl Biomater. 2017;105(6):1692–716.

    Article  CAS  Google Scholar 

  33. Yang C, Plackett D, Needham D, Burt HM. PLGA and PHBV microsphere formulations and solid-state characterization: possible implications for local delivery of fusidic acid for the treatment and prevention of orthopaedic infections. Pharm Res. 2009;26(7):1644–56.

    Article  CAS  Google Scholar 

  34. Haghjou N, Soheilian M, Abdekhodaie MJ. Sustained release intraocular drug delivery devices for treatment of uveitis. J Ophthalmic Vision Res. 2011;6(4):317–29.

    CAS  Google Scholar 

  35. Pacella F, Ferraresi AF, Turchetti P, Lenzi T, Giustolisi R, Bottone A, et al. Intravitreal injection of Ozurdex® implant in patients with persistent diabetic macular edema, with six-month follow-up. Ophthalmol Eye Dis. 2016;8:OED. S38028.

    Article  Google Scholar 

  36. Kiss S. Sustained-release corticosteroid delivery systems. Retin Today. 2010;44–6.

  37. Mohtashami Z, Javar HA, Tehrani MR, Esfahani MR, Roohipour R, Aghajanpour L, et al. Fabrication, Optimization, and In Vitro and In Vivo Characterization of Intra-vitreal Implant of Budesonide Generally Made of PHBV. AAPS PharmSciTech. 2020;21(8):1–12.

    Article  Google Scholar 

  38. Sultana N, Khan TH. In vitro degradation of PHBV scaffolds and nHA/PHBV composite scaffolds containing hydroxyapatite nanoparticles for bone tissue engineering. J Nanomater. 2012;2012:1–12.

    Google Scholar 

  39. Tebaldi ML, Maia ALC, Poletto F, de Andrade FV, Soares DCF. Poly (-3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV): current advances in synthesis methodologies, antitumor applications and biocompatibility. J Drug Deliv Sci Technol. 2019;51:115–26.

    Article  CAS  Google Scholar 

  40. Wang S, Song C, Chen G, Guo T, Liu J, Zhang B, et al. Characteristics and biodegradation properties of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/organophilic montmorillonite (PHBV/OMMT) nanocomposite. Polym Degrad Stab. 2005;87(1):69–76.

    Article  CAS  Google Scholar 

  41. Jiang L, Morelius E, Zhang J, Wolcott M, Holbery J. Study of the poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites prepared by solution casting and melt processing. J Compos Mater. 2008;42(24):2629–45.

    Article  CAS  Google Scholar 

  42. Citirik M, Dilsiz N, Batman C, Zilelioglu O. Comparative toxicity of 4 commonly used intravitreal corticosteroids on rat retina. Can J Ophthalmol. 2009;44(3):e3–8.

    Article  Google Scholar 

  43. Fruijtier-Pölloth C. Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products. Toxicology. 2005;214(1-2):1–38.

    Article  Google Scholar 

  44. Avella M, Martuscelli E, Raimo M. Review Properties of blends and composites based on poly (3-hydroxy) butyrate (PHB) and poly (3-hydroxybutyrate-hydroxyvalerate)(PHBV) copolymers. J Mater Sci. 2000;35(3):523–45.

    Article  CAS  Google Scholar 

  45. Wang S, Ma P, Wang R, Wang S, Zhang Y, Zhang Y. Mechanical, thermal and degradation properties of poly (d, l-lactide)/poly (hydroxybutyrate-co-hydroxyvalerate)/poly (ethylene glycol) blend. Polym Degrad Stab. 2008;93(7):1364–9.

    Article  CAS  Google Scholar 

  46. Wu IY, Bala S, Škalko-Basnet N, Di Cagno MP. Interpreting non-linear drug diffusion data: utilizing Korsmeyer-Peppas model to study drug release from liposomes. Eur J Pharm Sci. 2019;138:105026.

    Article  CAS  Google Scholar 

  47. Sinko PJ, Singh Y. Martin's physical pharmacy and pharmaceutical sciences: physical chemical and biopharmaceutical principles in the pharmaceutical sciences. Walter Kluer; 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Abedin Dorkoosh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Guest Editors: Qingguo Xu and Iok-Hou Pang

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastegar Ramsheh, Z.S., Mohtashami, Z., Kargar, N. et al. Design and In Vitro Evaluation of a Slow-Release Intraocular Implant of Betamethasone. AAPS PharmSciTech 22, 174 (2021). https://doi.org/10.1208/s12249-021-02048-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02048-0

KEY WORDS

Navigation