Skip to main content

Advertisement

Log in

Lipid Coating of Chitosan Nanogels for Improved Colloidal Stability and In Vitro Biocompatibility

  • Rapid Communication
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Chitosan-based carriers have coined their position as delivery agents. When assembled with polyanions into nanogels (NG), these vectors have enabled the delivery of drugs, genes, and proteins to a myriad of applications. However, the chemical and colloidal instability of chitosan nanoformulations in physiologically compatible media prejudices in vitro biocompatibility and, thus, scale-up applications. To overcome this issue, we envisaged the coating of chitosan nanogel with phospholipids. In this investigation, we report a two-stage synthesis of hybrid lipid-coated chitosan nanogels, named nanolipogels (NLG), to improve colloidal stability and in vitro biocompatibility over chitosan NG. Practically, we employed a mixing platform to first prepare chitosan NG by ionic gelation, dilute the suspension, and, in a second stage, coat the NG with lipids. We demonstrate that lipid coating increased particle size and reversed the ζ-potential to negative values, suggesting the successful formation of NLG, while maintaining a homogeneous size distribution (PDI < 0.25). Furthermore, multiple light scattering analysis confirmed NLG improved colloidal stability in phosphate buffer saline and cell culture medium, with respect to NG. Finally, lipid coating completely abrogated the cytotoxicity of NG when incubated at 50 μg·mL−1 with HeLa, U87, or b.End3 cell lines and significantly improved the biocompatibility at 100 and 150 μg·mL−1. Future investigations will explore how the lipid coating affects drug loading, release profile, and the ability of NLG to deliver drugs and genes in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Shariatinia Z. Pharmaceutical applications of chitosan. Adv Colloid Interf Sci. 2019;263:131–94.

    Article  CAS  Google Scholar 

  2. Garcia-Fuentes M, Alonso MJ. Chitosan-based drug nanocarriers: where do we stand? J Control Release. 2012;161(2):496–504.

    Article  CAS  Google Scholar 

  3. Ozturk K, Arslan FB, Tavukcuoglu E, Esendagli G, Calis S. Aggregation of chitosan nanoparticles in cell culture: reasons and resolutions. Int J Pharm. 2020;578:119119.

    Article  CAS  Google Scholar 

  4. Nafee N, Schneider M, Schaefer UF, Lehr C-M. Relevance of the colloidal stability of chitosan/PLGA nanoparticles on their cytotoxicity profile. Int J Pharm. 2009;381(2):130–9.

    Article  CAS  Google Scholar 

  5. Bugnicourt L, Ladavière C. A close collaboration of chitosan with lipid colloidal carriers for drug delivery applications. J Control Release. 2017;256:121–40.

    Article  CAS  Google Scholar 

  6. Li X, Guo S, Zhu C, Zhu Q, Gan Y, Rantanen J, et al. Intestinal mucosa permeability following oral insulin delivery using core shell corona nanolipoparticles. Biomaterials. 2013;34(37):9678–87.

    Article  CAS  Google Scholar 

  7. Diebold Y, Jarrín M, Sáez V, Carvalho ELS, Orea M, Calonge M, et al. Ocular drug delivery by liposome–chitosan nanoparticle complexes (LCS-NP). Biomaterials. 2007;28(8):1553–64.

    Article  CAS  Google Scholar 

  8. Guo P, Liu D, Subramanyam K, Wang B, Yang J, Huang J, et al. Nanoparticle elasticity directs tumor uptake. Nat Commun. 2018;9(1):130.

    Article  Google Scholar 

  9. Baghdan E, Pinnapireddy SR, Strehlow B, Engelhardt KH, Schäfer J, Bakowsky U. Lipid coated chitosan-DNA nanoparticles for enhanced gene delivery. Int J Pharm. 2018;535(1):473–9.

    Article  CAS  Google Scholar 

  10. Callewaert M, Roullin VG, Cadiou C, Millart E, Van Gulik L, Andry MC, et al. Tuning the composition of biocompatible Gd nanohydrogels to achieve hypersensitive dual T1/T2 MRI contrast agents. J Mater Chem B. 2014;2(37):6397–405.

    Article  CAS  Google Scholar 

  11. Courant T, Roullin VG, Cadiou C, Callewaert M, Andry MC, Portefaix C, et al. Hydrogels incorporating GdDOTA: towards highly efficient dual T1/T2 MRI contrast agents. Angew Chem Int Ed Eng. 2012;51(36):9119–22.

    Article  CAS  Google Scholar 

  12. Jiang M, Gan L, Zhu C, Dong Y, Liu J, Gan Y. Cationic core–shell liponanoparticles for ocular gene delivery. Biomaterials. 2012;33(30):7621–30.

    Article  CAS  Google Scholar 

  13. Chiesa E, Dorati R, Pisani S, Conti B, Bergamini G, Modena T, et al. The microfluidic technique and the manufacturing of polysaccharide nanoparticles. Pharmaceutics. 2018;10(4):267.

    Article  CAS  Google Scholar 

  14. Hong JS, Stavis SM, DePaoli Lacerda SH, Locascio LE, Raghavan SR, Gaitan M. Microfluidic directed self-assembly of liposome-hydrogel hybrid nanoparticles. Langmuir. 2010;26(13):11581–8.

    Article  CAS  Google Scholar 

  15. Valencia PM, Farokhzad OC, Karnik R, Langer R. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat Nanotechnol. 2012;7(10):623–9.

    Article  CAS  Google Scholar 

  16. Kulkarni JA, Thomson SB, Zaifman J, Leung J, Wagner PK, Hill A, et al. Spontaneous, solvent-free entrapment of siRNA within lipid nanoparticles. Nanoscale. 2020;12(47):23959–66.

    Article  CAS  Google Scholar 

  17. Sun J, Zhang L, Wang J, Feng Q, Liu D, Yin Q, et al. Tunable rigidity of (polymeric core)-(lipid shell) nanoparticles for regulated cellular uptake. Adv Mater. 2015;27(8):1402–7.

    Article  CAS  Google Scholar 

  18. Gan L, Wang J, Zhao Y, Chen D, Zhu C, Liu J, et al. Hyaluronan-modified core–shell liponanoparticles targeting CD44-positive retinal pigment epithelium cells via intravitreal injection. Biomaterials. 2013;34(24):5978–87.

    Article  CAS  Google Scholar 

  19. Cardia MC, Caddeo C, Lai F, Fadda AM, Sinico C, Luhmer M. 1H NMR study of the interaction of trans-resveratrol with soybean phosphatidylcholine liposomes. Sci Rep. 2019;9(1):17736.

    Article  Google Scholar 

  20. Bartlett GR. Phosphorus assay in column chromatography. J Biol Chem. 1959;234(3):466–8.

    Article  CAS  Google Scholar 

  21. Zhang L, Feng Q, Wang J, Sun J, Shi X, Jiang X. Microfluidic synthesis of rigid nanovesicles for hydrophilic reagents delivery. Angew Chem Int Ed Eng. 2015;54(13):3952–6.

    Article  CAS  Google Scholar 

  22. Derbali RM, Aoun V, Moussa G, Frei G, Tehrani SF, Del’Orto JC, et al. Tailored nanocarriers for the pulmonary delivery of levofloxacin against pseudomonas aeruginosa: a comparative study. Mol Pharm. 2019;16:1906–16.

    Article  CAS  Google Scholar 

  23. Calvo NL, Sreekumar S, Svetaz LA, Lamas MC, Moerschbacher BM, Leonardi D. Design and characterization of chitosan nanoformulations for the delivery of antifungal agents. Int J Mol Sci. 2019;20(15):3686.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from National Sciences and Engineering Research Council (JLC grant # RGPIN-2018-05682; VGR grant # RGPIN/06636-2018). The MLS Nanobrook Omni DLS and TurbiscanLAB™ used in this study were acquired with funds from Canada Foundation for Innovation (VGR grant # #34227). VPG acknowledges the support of Mitacs Inc. (Mitacs Globalink Graduate Fellowship Award GLF407).

Author information

Authors and Affiliations

Authors

Contributions

Victor Passos Gibson: methodology, formal analysis, investigation, writing — original draft, and writing — review & editing; Julia Balestrero Braga Nunes: investigation; Deborah Quintanilha Falcão: conceptualization, methodology, and investigation; V. Gaëlle Roullin: conceptualization, resources, writing — review & editing, funding acquisition, and supervision; Jeanne Leblond Chain: conceptualization, resources, writing — review & editing, funding acquisition, and supervision.

Corresponding author

Correspondence to Jeanne Leblond Chain.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplemental Information includes 1 table and 3 figures, the detailed materials and method section, as well as the data available in this study.

ESM 1

(DOCX 737 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passos Gibson, V., Nunes, J.B.B., Falcao, D.Q. et al. Lipid Coating of Chitosan Nanogels for Improved Colloidal Stability and In Vitro Biocompatibility. AAPS PharmSciTech 22, 159 (2021). https://doi.org/10.1208/s12249-021-02027-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02027-5

KEY WORDS

Navigation