Skip to main content

Advertisement

Log in

Triphenylphosphonium functionalized Ficus religiosa L. extract loaded nanoparticles improve the mitochondrial function in oxidative stress induced diabetes

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

ABSTRACT

The present study was aimed to enhance the mitochondrial function in oxidative stress-induced diabetes. To achieve this, Ficus religiosa L. extract loaded solid lipid nanoparticles (ETNPs) were prepared and functionalized by using triphenylphosphonium. Developed nanoparticles demonstrated desired quality attributes with sustained release for up to 24 h and excellent storage stability for up to 180 days at 40 ± 2°C and 75 ± 5% relative humidity. In vitro cytotoxicity assessment showed no toxicity of ETNPs. Interestingly, oral administration of ETNPs to diabetic rats demonstrated improved mitochondrial function by normalizing the mitochondrial morphology, intracellular calcium ion concentration, complexes I, II, IV, and V activity, mitochondrial membrane potential, and antioxidant levels. Further, reduction in apoptotic markers viz. cytochrome-C, caspase-3, and caspase-9 was observed following the ETNP treatment. Moreover, significant reduction in blood glucose and glycosylated hemoglobin while significant improvement in plasma insulin was observed as compared to the diabetic group following the treatment with developed formulation. Furthermore, histopathology studies confirmed the safety of the developed formulation and thus, data in hand collectively suggest that proposed strategy can be effectively used to improve the mitochondrial function in oxidative stress-induced diabetes along with better control over blood glucose and glycosylated hemoglobin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Agrawal AK, Kumar K, Swarnakar NK, Kushwah V, Jain S. “Liquid crystalline nanoparticles”: rationally designed vehicle to improve stability and therapeutic efficacy of insulin following oral administration. Mol Pharm. 2017;14(6):1874–82.

    Article  CAS  PubMed  Google Scholar 

  2. Agrawal AK, Urimi D, Harde H, Kushwah V, Jain S. Folate appended chitosan nanoparticles augment the stability, bioavailability and efficacy of insulin in diabetic rats following oral administration. RSC Adv. 2015;5(127):105179–93.

    Article  CAS  Google Scholar 

  3. Agrawal AK, Harde H, Thanki K, Jain S. Improved stability and antidiabetic potential of insulin containing folic acid functionalized polymer stabilized multilayered liposomes following oral administration. Biomacromolecules. 2014;15(1):350–60.

    Article  CAS  PubMed  Google Scholar 

  4. Agrawal A, Gupta P, Khanna A, Sharma R, Chandrabanshi H, Gupta N, et al. Development and characterization of in situ gel system for nasal insulin delivery. Die Pharmazie-An International Journal of Pharmaceutical Sciences. 2010;65(3):188–93.

    CAS  Google Scholar 

  5. Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51(10):2944–50.

    Article  CAS  PubMed  Google Scholar 

  6. Ernster L, Schatz G. Mitochondria: a historical review. J Cell Biol. 1981;91(3 Pt 2):227s–55s.

    Article  CAS  PubMed  Google Scholar 

  7. Patti ME, Corvera S. The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr Rev. 2010;31(3):364–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Torres M. Mitogen-activated protein kinase pathways in redox signaling. Front Biosci. 2003;8:d369–91.

    Article  CAS  PubMed  Google Scholar 

  10. Lanner JT, Katz A, Tavi P, Sandstrom ME, Zhang SJ, Wretman C, et al. The role of Ca2+ influx for insulin-mediated glucose uptake in skeletal muscle. Diabetes. 2006;55(7):2077–83.

    Article  CAS  PubMed  Google Scholar 

  11. Cruz CM, Rinna A, Forman HJ, Ventura AL, Persechini PM, Ojcius DM. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem. 2007;282(5):2871–9.

    Article  CAS  PubMed  Google Scholar 

  12. Heller A, Brockhoff G, Goepferich A. Targeting drugs to mitochondria. Eur J Pharm Biopharm. 2012;82(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  13. Kirana H, Jali M, Srinivasan B. The study of aqueous extract of Ficus religiosa Linn. on cytokine TNF-α in type 2 diabetic rats. Pharmacognosy Res. 2011;3(1):30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pandit R, Phadke A, Jagtap A. Antidiabetic effect of Ficus religiosa extract in streptozotocin-induced diabetic rats. J Ethnopharmacol. 2010;128(2):462–6.

    Article  PubMed  Google Scholar 

  15. Priyanka K, Singh S. Applications of conjugated systems, nanomedicines, peptides and herbal drugs as mitochondrial targeted delivery systems in the treatment of oxidative stress induced diabetes. J Drug Deliv Sci Technol. 2019;52:355–68.

    Article  CAS  Google Scholar 

  16. Priyanka K, Kosuru R, Sharma RP, Sahu PL, Singh S. Assessment of pharmacokinetic parameters of lupeol in Ficus religiosa L. extract after oral administration of suspension and solid lipid nanoparticles to Wistar rats. J Drug Deliv Sci Technol. 2017;41:58–67.

    Article  CAS  Google Scholar 

  17. Priyanka K, Sahu PL, Singh S. Optimization of processing parameters for the development of Ficus religiosa L. extract loaded solid lipid nanoparticles using central composite design and evaluation of antidiabetic efficacy. J Drug Deliv Sci Technol. 2018;43:94–102.

    Article  CAS  Google Scholar 

  18. Patel KK, Gade S, Anjum MM, Singh SK, Maiti P, Agrawal AK, et al. Effect of penetration enhancers and amorphization on transdermal permeation flux of raloxifene-encapsulated solid lipid nanoparticles: an ex vivo study on human skin. Appl Nanosci. 2019;9(6):1383–94.

    Article  CAS  Google Scholar 

  19. Anjum MM, Patel KK, Dehari D, Pandey N, Tilak R, Agrawal AK, et al. Anacardic acid encapsulated solid lipid nanoparticles for Staphylococcus aureus biofilm therapy: chitosan and DNase coating improves antimicrobial activity. Drug Deliv Transl Res. 2020:1–13.

  20. Harde H, Agrawal AK, Katariya M, Kale D, Jain S. Development of a topical adapalene-solid lipid nanoparticle loaded gel with enhanced efficacy and improved skin tolerability. RSC Adv. 2015;5(55):43917–29.

    Article  CAS  Google Scholar 

  21. Kulkarni SA, Feng S-S. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res. 2013;30(10):2512–22.

    Article  CAS  PubMed  Google Scholar 

  22. Agrawal AK, Aqil F, Jeyabalan J, Spencer WA, Beck J, Gachuki BW, et al. Milk-derived exosomes for oral delivery of paclitaxel. Nanomedicine. 2017;13(5):1627–36.

    Article  CAS  PubMed  Google Scholar 

  23. Kushwah V, Agrawal AK, Dora CP, Mallinson D, Lamprou DA, Gupta RC, et al. Novel gemcitabine conjugated albumin nanoparticles: a potential strategy to enhance drug efficacy in pancreatic cancer treatment. Pharm Res. 2017;34(11):2295–311.

    Article  CAS  PubMed  Google Scholar 

  24. Jain S, Garg T, Kushwah V, Thanki K, Agrawal AK, Dora CP. α-Tocopherol as functional excipient for resveratrol and coenzyme Q10-loaded SNEDDS for improved bioavailability and prophylaxis of breast cancer. J Drug Target. 2017;25(6):554–65.

    Article  CAS  PubMed  Google Scholar 

  25. Kushwah V, Katiyar SS, Agrawal AK, Gupta RC, Jain S. Co-delivery of docetaxel and gemcitabine using PEGylated self-assembled stealth nanoparticles for improved breast cancer therapy. Nanomedicine. 2018;14(5):1629–41.

    Article  CAS  PubMed  Google Scholar 

  26. Patel KK, Agrawal AK, Anjum MM, Tripathi M, Pandey N, Bhattacharya S, et al. DNase-I functionalization of ciprofloxacin-loaded chitosan nanoparticles overcomes the biofilm-mediated resistance of Pseudomonas aeruginosa. Appl Nanosci. 2020;10(2):563–75.

    Article  CAS  Google Scholar 

  27. Aqil F, Kausar H, Agrawal AK, Jeyabalan J, Kyakulaga A-H, Munagala R, et al. Exosomal formulation enhances therapeutic response of celastrol against lung cancer. Exp Mol Pathol. 2016;101(1):12–21.

    Article  CAS  PubMed  Google Scholar 

  28. Çiğ B, Nazıroğlu M. Investigation of the effects of distance from sources on apoptosis, oxidative stress and cytosolic calcium accumulation via TRPV1 channels induced by mobile phones and Wi-Fi in breast cancer cells. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2015;1848(10):2756–65.

    Article  CAS  Google Scholar 

  29. Barrière DA, Noll C, Roussy G, Lizotte F, Kessai A, Kirby K, et al. Combination of high-fat/high-fructose diet and low-dose streptozotocin to model long-term type-2 diabetes complications. Sci Rep. 2018;8(1):424.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Chao, J.H. and Hirsch, I.B., Initial management of severe hyperglycemia in type 2 diabetes. (2015)

    Google Scholar 

  31. Jang YY, Song JH, Shin YK, Han ES, Lee CS. Protective effect of boldine on oxidative mitochondrial damage in streptozotocin-induced diabetic rats. Pharmacol Res. 2000;42(4):361–71.

    Article  CAS  PubMed  Google Scholar 

  32. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248–54.

    Article  CAS  PubMed  Google Scholar 

  33. Baracca A, Sgarbi G, Solaini G, Lenaz G. Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F0 during ATP synthesis. Biochimica et biophysica acta (BBA)-bioenergetics. 2003;1606(1-3):137–46.

    Article  CAS  Google Scholar 

  34. Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys. 1984;21(2):130–2.

    CAS  PubMed  Google Scholar 

  35. Beers RF Jr, Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952;195(1):133–40.

    Article  CAS  PubMed  Google Scholar 

  36. Esworthy RS, Baker MA, Chu F-F. Expression of selenium-dependent glutathione peroxidase in human breast tumor cell lines. Cancer Res. 1995;55(4):957–62.

    CAS  PubMed  Google Scholar 

  37. Schulz K, Kerber S, Kelm M. Reevaluation of the Griess method for determining NO/NO2- in aqueous and protein-containing samples. Nitric Oxide. 1999;3(3):225–34.

    Article  CAS  PubMed  Google Scholar 

  38. Sunderman FW Jr, Marzouk A, Hopfer SM, Zaharia O, Reid MC. Increased lipid peroxidation in tissues of nickel chloride-treated rats. Ann Clin Lab Sci. 1985;15(3):229–36.

    CAS  PubMed  Google Scholar 

  39. Nayak SS, Pattabiraman T. A new colorimetric method for the estimation of glycosylated hemoglobin. Clin Chim Acta. 1981;109(3):267–74.

    Article  CAS  PubMed  Google Scholar 

  40. Palmeira CM, Rolo AP, Berthiaume J, Bjork JA, Wallace KB. Hyperglycemia decreases mitochondrial function: the regulatory role of mitochondrial biogenesis. Toxicol Appl Pharmacol. 2007;225(2):214–20.

    Article  CAS  PubMed  Google Scholar 

  41. Asokkumar K, Umamaheswari M, Baharudeen A, Sivashanmugam AT, Subhdhradevi V, Ravi TK. Antioxidant and hepatoprotective activities of the fractions of Ficus microcarpa using in vitro and ex vivo models. Funct Plant Sci Biotechnol. 2010;4(Spl Issue 1):17–27.

    Google Scholar 

  42. Ross M, Kelso G, Blaikie F, James A, Cocheme H, Filipovska A, et al. Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochem Mosc. 2005;70(2):222–30.

    Article  CAS  Google Scholar 

  43. Pathak RK, Kolishetti N, Dhar S. Targeted nanoparticles in mitochondrial medicine. Wiley Interdiscip Rev: Nanomed Nanobiotechnol. 2015;7(3):315–29.

    CAS  Google Scholar 

  44. Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech. 2011;12(1):62–76.

    Article  CAS  PubMed  Google Scholar 

  45. Firenzuoli F, Gori L. Herbal medicine today: clinical and research issues. Evid Based Complement Alternat Med. 2007;4(S1):37–40.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Palade GE. The fine structure of mitochondria. Anat Rec. 1952;114(3):427–51.

    Article  CAS  PubMed  Google Scholar 

  47. Cipolat S, de Brito OM, Dal Zilio B, Scorrano L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci. 2004;101(45):15927–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal. 2010;12(4):537–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lorenzi M. The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. J Diabetes Res. 2007;2007.

  50. Thomas DA, Stauffer C, Zhao K, Yang H, Sharma VK, Szeto HH, et al. Mitochondrial targeting with antioxidant peptide SS-31 prevents mitochondrial depolarization, reduces islet cell apoptosis, increases islet cell yield, and improves posttransplantation function. J Am Soc Nephrol. 2007;18(1):213–22.

    Article  CAS  PubMed  Google Scholar 

  51. Hopper RK, Carroll S, Aponte AM, Johnson DT, French S, Shen R-F, et al. Mitochondrial matrix phosphoproteome: effect of extra mitochondrial calcium. Biochemistry. 2006;45(8):2524–36.

    Article  CAS  PubMed  Google Scholar 

  52. Orrenius S, Zhihotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Cell Biol. 2003;4:552–65.

    Article  CAS  Google Scholar 

  53. Hüttemann M, Pecina P, Rainbolt M, Sanderson TH, Kagan VE, Samavati L, et al. The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: from respiration to apoptosis. Mitochondrion. 2011;11(3):369–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Wang M, Crager M, Pugazhenthi S. Modulation of apoptosis pathways by oxidative stress and autophagy in β cells. Exp Diabetes Res. 2012;2012:1–14.

    Google Scholar 

  55. Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J. 2015;15(1):71.

    Article  CAS  Google Scholar 

  56. Vedulla S, Parameswari SA, Gopinath C. Isolation of active compound in Ficus religiosa Linn. International Journal of Pharmacognosy and Phytochemical Research. 2013;5(1):60–5.

    Google Scholar 

Download references

ACKNOWLEDGEMENTS

The first author is grateful to the Indian Institute of Technology (Banaras Hindu University), Varanasi for providing financial support in the form Teaching Assistantship funded by the Ministry of Human Resource Development, Government of India. Dulla Naveen Kumar is thankful to SERB for providing financial assistance in terms of JRF in one of the SERB sponsored project (SRG/2019/000150). Authors extend their sincere thanks to Mr. Vinay K Ahire, Consortium for Scientific Research, Indore, Madhya Pradesh, India for carrying out SEM study. The authors are thankful to Prof. Mukesh Doble, IIT Madras, Chennai for cell line studies. The authors are thankful to Prof. Sanjeev Kumar Mahto, School of Biomedical Engineering, IIT (BHU), Varanasi for his kind assistance in fluorescence microscopic studies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ashish Kumar Agrawal or Sanjay Singh.

Ethics declarations

CONFLICT OF INTEREST

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karunanidhi, P., Verma, N., Kumar, D.N. et al. Triphenylphosphonium functionalized Ficus religiosa L. extract loaded nanoparticles improve the mitochondrial function in oxidative stress induced diabetes. AAPS PharmSciTech 22, 158 (2021). https://doi.org/10.1208/s12249-021-02016-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02016-8

KEY WORDS

Navigation