Skip to main content

Advertisement

Log in

Improving Oral Bioavailability of Luteolin Nanocrystals by Surface Modification of Sodium Dodecyl Sulfate

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Luteolin suffers from drawbacks like low solubility and bioavailability, thus hindering its application in the clinic. In this study, we employed sodium dodecyl sulfate (SDS), an efficient tight junction opening agent, to modify the surface of luteolin nanocrystals, aiming to enhance the bioavailability of luteolin (LUT) and luteolin nanocrystals (LNC). The particle sizes of SDS-modified luteolin nanocrystals (SLNC) were slightly larger than that of LNC, and the zeta potential of LNC and SLNC was −25.0 ± 0.7 mV and −43.5 ± 0.4 mV, respectively. Both LNC and SLNC exhibited enhanced saturation solubility and high stability in the liquid state. In the cellular study, we found that SDS has cytotoxicity on caco-2 cells and could open the tight junction of the caco-2 monolayer, which could lead to an enhanced transport of luteolin across the intestinal membrane. The bioavailability of luteolin was enhanced for 1.90-fold by luteolin nanocrystals, and after modification with SDS, the bioavailability was enhanced to 3.48-fold. Our experiments demonstrated that SDS could efficiently open the tight junction and enhance the bioavailability of luteolin thereafter, revealing the construction of SDS-modified nanocrystals is a good strategy for enhancing the oral bioavailability of poorly soluble drugs like luteolin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lin LC, Pai YF, Tsai TH. Isolation of luteolin and luteolin-7-O-glucoside from Dendranthema morifolium Ramat Tzvel and their pharmacokinetics in rats. J Agric Food Chem. 2015;63:7700–6.

    Article  CAS  PubMed  Google Scholar 

  2. Dong X, Lan W, Yin X, Yang C, Wang W, Ni J. Simultaneous determination and pharmacokinetic study of quercetin, luteolin, and apigenin in rat plasma after oral administration of Matricaria Chamomilla L. extract by HPLC-UV. Evid-Based Compl Alt. 2017;2017:8370584.

    Google Scholar 

  3. Seelinger G, Merfort I, Schempp CM. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med. 2008;74:1667–77.

    Article  CAS  PubMed  Google Scholar 

  4. Ahmed S, Khan H, Fratantonio D, Hasan MM, Sharifi S, Fathi N, et al. Apoptosis induced by luteolin in breast cancer: mechanistic and therapeutic perspectives. Phytomedicine. 2019;59:152883.

    Article  CAS  PubMed  Google Scholar 

  5. Wang Q, Wang H, Jia Y, Pan H, Ding H. Luteolin induces apoptosis by ROS/ER stress and mitochondrial dysfunction in gliomablastoma. Cancer Chemother Pharmacol. 2017;79:1031–41.

    Article  CAS  PubMed  Google Scholar 

  6. Zhu S, Lei S, Zhou S. Luteolin shows antidepressant-like effect by inhibiting and downregulating plasma membrane monoamine transporter (PMAT, Slc29a4). J Funct Foods. 2019;54:440–8.

    Article  CAS  Google Scholar 

  7. Tan L, Liang C, Wang Y, Jiang Y, Zeng S, Tan R. Pharmacodynamic effect of luteolin micelles on alleviating cerebral ischemia reperfusion injury. Pharmaceutics. 2018;10:248.

    Article  CAS  PubMed Central  Google Scholar 

  8. Dang H, Meng M, Zhao H, Iqbal J, Dai R, Deng Y, et al. Luteolin-loaded solid lipid nanoparticles synthesis, characterization, & improvement of bioavailability, pharmacokinetics in vitro and vivo studies. J Nanopart Res. 2014;16:2347.

    Article  CAS  Google Scholar 

  9. Khan J, Alexander A, Ajazuddin SS, Saraf S. Luteolin phospholipid-complex: preparation, characterization and biological evaluation. J Pharm Pharmacol. 2014;66:1451–62.

    Article  CAS  PubMed  Google Scholar 

  10. Puhl AC, Fagundes M, dos Santos KC, Polikarpov I, das Silva MF, Fernandes JB, et al. Preparation and characterization of polymeric nanoparticles loaded with the flavonoid Luteolin, by using factorial design. Int J Drug Deliv. 2011;3:683–98.

    CAS  Google Scholar 

  11. Cheng M, Yuan F, Liu J, Liu W, Feng J, Jin Y, et al. Fabrication of fine puerarin nanocrystals by Box–Behnken Design to enhance intestinal absorption. AAPS PharmSciTech. 2020;21:1080–5.

    Google Scholar 

  12. Lu Y, Chen Y, Gemeinhart RA, Wu W, Li T. Developing nanocrystals for cancer treatment. Nanomedicine-UK. 2015;10:2537–52.

    Article  CAS  Google Scholar 

  13. Liu J, Tu L, Cheng M, Feng J, Jin Y. Mechanisms for oral absorption enhancement of drugs by nanocrystals. J Drug Deliv Sci Tech. 2020;56:101607.

    Article  CAS  Google Scholar 

  14. Müller RH, Peters K. Nanosuspensions for the formulation of poorly soluble drugs: I. preparation by a size-reduction technique. Int J Pharm. 1998;160:229–37.

    Article  Google Scholar 

  15. Aziz F, Fatima A, Khalique CK, Mahomed FM. Prandtl’s boundary layer equation for two-dimensional flow: exact solutions via the simplest equation method. Math Probl Eng. 2013;724385.

  16. Mou D, Chen H, Wan J, Xu H, Yang X. Potent dried drug nanosuspensions for oral bioavailability enhancement of poorly soluble drugs with pH-dependent solubility. Int J Pharm. 2011;413:237–44.

    Article  CAS  PubMed  Google Scholar 

  17. Liversidge GG, Conzentino P. Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats. Int J Pharm. 1995;125:309–13.

    Article  CAS  Google Scholar 

  18. Mohammad IS, Hu H, Yin L, He W. Drug nanocrystals: fabrication methods and promising therapeutic applications. Int J Pharm. 2019;562:187–202.

    Article  CAS  PubMed  Google Scholar 

  19. Quan P, Shi K, Piao H, Piao H, Liang N, Xia D, et al. A novel surface modified nitrendipine nanocrystals with enhancement of bioavailability and stability. Int J Pharm. 2012;430:366–71.

    Article  CAS  PubMed  Google Scholar 

  20. Wang J, Kong M, Zhou Z, Yan D, Yu X, Cheng X, et al. Mechanism of surface charge triggered intestinal epithelial tight junction opening upon chitosan nanoparticles for insulin oral delivery. Carbohydr Polym. 2017;157:596–602.

    Article  CAS  PubMed  Google Scholar 

  21. Bocsik A, Grof I, Kiss L, Otvos F, Zsiros O, Daruka L, et al. Dual action of the PN159/KLAL/MAP peptide: increase of drug penetration across caco-2 intestinal barrier model by modulation of tight junctions and plasma membrane permeability. Pharmaceutics. 2019;11:73.

    Article  CAS  PubMed Central  Google Scholar 

  22. Yi Y, Tu L, Hu K, Wu W, Feng J. The construction of puerarin nanocrystals and its pharmacokinetic and in vivo–in vitro correlation (IVIVC) studies on beagle dog. Colloids Surf, B. 2015;133:164–70.

    Article  CAS  Google Scholar 

  23. Annika T, Jouni H, Leena P. Stabilizing agents for drug nanocrystals: effect on bioavailability. Pharmaceutics. 2016;8:16.

    Article  CAS  Google Scholar 

  24. Yu Q, Wang Z, Li P, Yang Q. The effect of various absorption enhancers on tight junction in the human intestinal Caco-2 cell line. Drug Dev Ind Pharm. 2013;39:587–92.

    Article  CAS  PubMed  Google Scholar 

  25. Lin P, Chuang E, Chiu Y, Chen H, Lin K, Juang J, et al. Safety and efficacy of self-assembling bubble carriers stabilized with sodium dodecyl sulfate for oral delivery of therapeutic proteins. J Control Release. 2017;259:168–75.

    Article  CAS  PubMed  Google Scholar 

  26. Real D, Hoffmann S, Leonardi D, Salomon C, Goycoolea FM. Chitosan-based nanodelivery systems applied to the development of novel triclabendazole formulations. PLoS One. 2018;13:e0207625.

  27. Mauludin R, Müller RH, Keck CM. Kinetic solubility and dissolution velocity of rutin nanocrystals. Eur J Pharm Sci. 2009;36:502–10.

    Article  CAS  PubMed  Google Scholar 

  28. Liu M, Zhang J, Zhu X, Shan W, Li L, Zhong J, et al. Efficient mucus permeation and tight junction opening by dissociable “mucus-inert” agent coated trimethyl chitosan nanoparticles for oral insulin delivery. J Control Release. 2016;222:67–77.

    Article  CAS  PubMed  Google Scholar 

  29. Yeh TH, Hsu LW, Tseng MT, Lee PL, Sonjae K, Ho YC, et al. Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials. 2011;32:6164–73.

    Article  CAS  PubMed  Google Scholar 

  30. Quan YS, Hattori K, Lundborg E, Fujita T, Murakami M, Muranishi S, et al. Effectiveness and toxicity screening of various absorption enhancers using caco-2 cell monolayers. Biol Pharm Bull. 1998;21(6):615–20.

    Article  CAS  PubMed  Google Scholar 

  31. Tu L, Cheng M, Sun Y, Fang Y, Liu J, Liu W, et al. Fabrication of ultra-small nanocrystals by formation of hydrogen bonds: in vitro and in vivo evaluation. Int J Pharm. 2020;573:118730.

    Article  CAS  PubMed  Google Scholar 

  32. Matsusaki M, Hikimoto D, Nishiguchi A, Kadowaki K, Ohura K, Imai T, et al. 3D-fibroblast tissues constructed by a cell-coat technology enhance tight-junction formation of human colon epithelial cells. Biochem Bioph Res Co. 2015;475:363–9.

    Article  CAS  Google Scholar 

  33. Kaiser M, Pereira S, Pohl L, Ketelhut S, Kemper B, Gorzelanny C, et al. Chitosan encapsulation modulates the effect of capsaicin on the tight junctions of MDCK cells. Sci Rep-UK. 2015;5:1038.

    Google Scholar 

  34. Begletsova N, Selifonova E, Chumakov A, Al-Alwani A, Zakharevich A, Chernova R, et al. Chemical synthesis of copper nanoparticles in aqueous solutions in the presence of anionic surfactant sodium dodecyl sulfate. Colloids Surf A. 2018;552:75–80.

    Article  CAS  Google Scholar 

  35. Xie J, Luo Y, Chen Y, Ma Y, Yue P, Yang M. Novel breviscapine nanocrystals modified by panax notoginseng saponins for enhancing bioavailability and synergistic anti-platelet aggregation effect. Colloids Surf, B. 2019;175:333–42.

    Article  CAS  Google Scholar 

  36. Kumar R, Siril PF. Enhancing the solubility of fenofibrate by nanocrystal formation and encapsulation. AAPS PharmSciTech. 2018;9:284–92.

    Article  CAS  Google Scholar 

  37. Du J, Zhou Y, Wang L, Wang Y. Effect of PEGylated chitosan as multifunctional stabilizer for deacetylmycoepoxydience nanosuspension design and stability evaluation. Carbohydr Polym. 2016;153:471–81.

    Article  CAS  PubMed  Google Scholar 

  38. Chen T, Tu L, Wang G, Qi N, Wu W, Zhang W, et al. Multi-functional chitosan polymeric micelles as oral paclitaxel delivery systems for enhanced bioavailability and anti-tumor efficacy. Int J Pharm. 2020;578:119105.

    Article  CAS  PubMed  Google Scholar 

  39. Fares AR, Elmeshad AN, Kassem MAA. Enhancement of dissolution and oral bioavailability of lacidipine via pluronic P123/F127 mixed polymeric micelles: formulation, optimization using central composite design and in vivo bioavailability study. Drug Deliv. 2018;25:132–42.

    Article  CAS  PubMed  Google Scholar 

  40. Tu L, Yi Y, Wu W, Hu F, Hu K, Feng J. Effects of particle size on the pharmacokinetics of puerarin nanocrystals and microcrystals after oral administration to rat. Int J Pharm. 2013;458:135–40.

    Article  CAS  PubMed  Google Scholar 

  41. Li Y, Miao X, Chen T, Yi X, Wang R, Zhao H, et al. Zebrafish as a visual and dynamic model to study the transport of nanosized drug delivery systems across the biological barriers. Colloids Surf, B. 2017;156:227–35.

    Article  CAS  Google Scholar 

  42. Amelsberg A, Schteingart CD, Stein J, Simmonds WJ, Sawada GA, Ho NF, et al. Intestinal absorption of sodium dodecyl sulfate in the rodent: evidence for paracellular absorption. Am J Physiol-Gastr L. 1997;272:498–506.

    Google Scholar 

  43. Liu M, Zhong X, Yang Z. Chitosan functionalized nanocochleates for enhanced oral absorption of cyclosporine A. Sci Rep-UK. 2017;7:41322.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (81960717), the Health and Family Planning Commission of Jiangxi Province (2018B011, 20195652) and the “1050” Young Talent Scholar discipline project of Jiangxi University of TCM (JXSYLXK-ZHYA0015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianfang Feng or Liangxing Tu.

Ethics declarations

Ethics Statement

All procedures were approved by the Animal Research Ethics Committee, Jiangxi University of Traditional Chinese Medicine.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 443 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Sun, Y., Cheng, M. et al. Improving Oral Bioavailability of Luteolin Nanocrystals by Surface Modification of Sodium Dodecyl Sulfate. AAPS PharmSciTech 22, 133 (2021). https://doi.org/10.1208/s12249-021-02012-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02012-y

KEY WORDS

Navigation