Skip to main content

Advertisement

Log in

Critical Tools in Tableting Research: Using Compaction Simulator and Quality by Design (QbD) to Evaluate Lubricants’ Effect in Direct Compressible Formulation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

As commonly known, the product development stage is quite complex, requires intensive knowledge, and is time-consuming. The selection of the excipients with the proper functionality and their corresponding levels is critical to drug product performance. The objective of this study was to apply quality by design (QbD) principles for formulation development and to define the desired product quality profile (QTPP) and critical quality attributes (CQA) of a product. QbD is a risk- and science-based holistic approach for upgraded pharmaceutical development. In this study, Ibuprofen DC 85W was used as a model drug, Cellactose® 80 along with MicroceLac® 100 as a filler, and magnesium stearate, stearic acid, and sodium stearyl fumarate as lubricants. By applying different formulation parameters to the filler and lubricants, the QbD approach furthers the understanding of the effect of critical formulation and process parameters on CQAs and the contribution to the overall quality of the drug product. An experimental design study was conducted to determine the changes of the obtained outputs of the formulations, which were evaluated using the Modde Pro 12.1 statistical computer program that enables optimization by modeling complex relationships. The results of the optimum formulation revealed that MicroceLac® 100 was the superior filler, while magnesium stearate at 1% was the optimum lubricant. A design space that indicates the safety operation limits for the process and formulation variables was also created. This study enriches the understanding of the effect of excipients in formulation and assists in enhancing formulation design using experimental design and mathematical modeling methods in the frame of the QbD approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9.
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chudiwal VS, Shahi S, Chudiwal S. Development of sustained release gastro-retentive tablet formulation of nicardipine hydrochloride using quality by design (QbD) approach. Drug Dev Ind Pharm. 2018;44(5):787–99.

    Article  CAS  PubMed  Google Scholar 

  2. Tho I, Bauer-Brandl A. Quality by design (QbD) approaches for the compression step of tableting. Expert Opin Drug Deliv. 2011;8(12):1631–44.

    Article  CAS  PubMed  Google Scholar 

  3. Aksu B, Paradkar A, de Matas M, Özer Ö, Güneri T, York P. A quality by design approach using artificial intelligence techniques to control the critical quality attributes of ramipril tablets manufactured by wet granulation. Pharm Dev Technol. 2013;18(1):236–45.

    Article  CAS  PubMed  Google Scholar 

  4. Aksu B, Yegen G, Purisa S, Cevher E, Ozsoy Y. Optimisation of ondansetron orally disintegrating tablets using artificial neural networks. Trop J Pharm Res. 2014;13(9):1374–83.

    Article  CAS  Google Scholar 

  5. Lawrence XY. Pharmaceutical quality by design: product and process development, understanding, and control. Pharm Res. 2008;25(4):781–91.

    Article  Google Scholar 

  6. Thoorens G, Krier F, Leclercq B, Carlin B, Evrard B. Microcrystalline cellulose, a direct compression binder in a quality by design environment—a review. Int J Pharm. 2014;473(1-2):64–72.

    Article  CAS  PubMed  Google Scholar 

  7. Tyagi S, Madhav N, Ojha A, Goswami V, Rawat U. An Exhaustive Statistic on Current Pharmaceutical Excipients-a Review. Innovat International Journal Of Medical & Pharmaceutical Sciences. 2017;10(2):6.

  8. Aulton ME, Taylor K. Pharmaceutical preformulation. Aulton’s pharmaceutics: the design and manufacture of medicines. 4th ed. Edinburgh: Elsevie r Health Sciences; 2013.

    Google Scholar 

  9. Kushner J, Langdon BA, Hicks I, Song D, Li F, Kathiria L, et al. A quality-by-design study for an immediate-release tablet platform: examining the relative impact of active pharmaceutical ingredient properties, processing methods, and excipient variability on drug product quality attributes. J Pharm Sci. 2014;103(2):527–38.

    Article  CAS  PubMed  Google Scholar 

  10. Patel H, Shah V, Upadhyay U. New pharmaceutical excipients in solid dosage forms-A review. International Journal of Pharmacy & Life Sciences. 2011;1(2):8.

  11. MEGGLE Group Wasserburg, BG excipients and technology, Megglestrasse 6–12, Wasserburg, Germany. Retrieved December 2020. https://www.meggle-pharma.com/.

  12. Rowe RC, Sheskey P, Quinn M. Handbook of pharmaceutical excipients: Libros Digitales-Pharmaceutical Press; 2009.

    Google Scholar 

  13. Rojas J, Buckner I, Kumar V. Co-processed excipients with enhanced direct compression functionality for improved tableting performance. Drug Dev Ind Pharm. 2012;38(10):1159–70.

    Article  CAS  PubMed  Google Scholar 

  14. Saha S, Shahiwala AF. Multifunctional coprocessed excipients for improved tabletting performance. Expert Opin Drug Deliv. 2009;6(2):197–208.

    Article  CAS  PubMed  Google Scholar 

  15. Gupta P, Nachaegari SK, Bansal AK. Improved excipient functionality by coprocessing. Excipient development for pharmaceutical, biotechnology, and drug delivery systems. 2006;28:109–24.

  16. Paul S, Sun CC. Systematic evaluation of common lubricants for optimal use in tablet formulation. Eur J Pharm Sci. 2018;117:118–27.

    Article  CAS  PubMed  Google Scholar 

  17. Wang JJ, Guillot MA, Bateman SD, Morris KR. Modeling of adhesion in tablet compression. II. Compaction studies using a compaction simulator and an instrumented tablet press. J Pharm Sci. 2004;93(2):407–17.

    Article  CAS  PubMed  Google Scholar 

  18. Mollan MJ Jr, Çelik M. The effects of lubrication on the compaction and post-compaction properties of directly compressible maltodextrins. Int J Pharm. 1996;144(1):1–9.

    Article  CAS  Google Scholar 

  19. Li J, Wu Y. Lubricants in pharmaceutical solid dosage forms. Lubricants. 2014;2(1):21–43.

    Article  CAS  Google Scholar 

  20. Louw R. Evaluation and comparison of magnesium stearate and sodium stearyl fumarate (Pruv) as lubricants in directly compressible tablet formulations: their effect on tablet properties and drug dissolution 2003; (Doctoral dissertation, North-West University).

  21. Wang J, Wen H, Desai D. Lubrication in tablet formulations. Eur J Pharm Biopharm. 2010;75(1):1–5.

    Article  PubMed  Google Scholar 

  22. Al-Karawi C, Cech T, Bang F, Leopold CS. Investigation of the tableting behavior of Ibuprofen DC 85 W. Drug Dev Ind Pharm. 2018;44(8):1262–72.

    Article  CAS  PubMed  Google Scholar 

  23. Bang F, Cech T, Geiselhart V. Combining directly compressible Ibuprofen DC 85 W with different caffeine grades and investigating the impact of particle size on processability and content uniformity (poster) BASF. 2019.

  24. Çelik M, editor. Pharmaceutical powder compaction technology: CRC Press; 2016.

    Google Scholar 

  25. Çelik M, Marshall K. Use of a compaction simulator system in tabletting research. Drug Dev Ind Pharm. 1989;15(5):759–800.

    Article  Google Scholar 

  26. Michaut F, Busignies V, Fouquereau C, De Barochez BH, Leclerc B, Tchoreloff P. Evaluation of a rotary tablet press simulator as a tool for the characterization of compaction properties of pharmaceutical products. J Pharm Sci. 2010;99(6):2874–85.

    Article  CAS  PubMed  Google Scholar 

  27. ICH guideline Q8 (R2) on pharmaceutical development EMA/CHMP/ICH/167068/2004. Retrieved December 2020. https://www.ema.europa.eu/en/ich-q8-r2-pharmaceutical-development.

  28. Train D. Some aspects of the property of angle of repose of powders. J Pharm Pharmacol. 1958;10(S1):127T–35T.

    CAS  Google Scholar 

  29. Staniforth J. Powder flow. In: Aulton ME, editor. Pharmaceutics – the science of dosage form design. 2nd ed. London: Churchill Livingstone; 2002. p. 197–210.

    Google Scholar 

  30. Carr RL. Evaluating flow properties of solids. Chem Eng. 1965;18:163–8.

    Google Scholar 

  31. Hausner HH. Friction conditions in a mass of metal powder. Polytechnic Inst. of Brooklyn. Univ. of California, Los Angeles; 1967.

  32. Shah RB, Tawakkul MA, Khan MA. Comparative evaluation of flow for pharmaceutical powders and granules. AAPS PharmSciTech. 2008;9(1):250–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. The United States pharmacopeia. The National Formulary. Rockville, Md.: United States Pharmacopeial Convention, Inc.; 1979.

  34. MODDE. Design of Experiments Solution User Guide. Sweden: Sartorius Stedim Data Analytics; 2018.

    Google Scholar 

  35. Suciu S, Iurian S, Bogdan CA, Iovanov RA, Rus L, Moldovan M, et al. QbD approach in the development of oral lyophilisates with ibuprofen for paediatric use. Farmacia. 2018;66:10.

    Article  Google Scholar 

  36. Iurian S, Ilie L, Achim M, Tomuță I. The evaluation of dynamic compaction analysis as a qbd tool for paediatric orodispersible minitablet formulation. Farmacia 2020;68 (6):999–1010.

  37. Wu H, Khan MA. Quality-by-design (QbD): an integrated approach for evaluation of powder blending process kinetics and determination of powder blending end-point. J Pharm Sci. 2009;98(8):2784–98.

    Article  CAS  PubMed  Google Scholar 

  38. Aksu B, Paradkar A, de Matas M, Özer Ö, Güneri T, York P. Quality by design approach: application of artificial intelligence techniques of tablets manufactured by direct compression. AAPS PharmSciTech. 2012;13(4):1138–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Betterman SM, Levy SE, Brown BA. A tale of two drugs: how using QbD tools can enhance the development process. J GXP Compl. 2012;16(1):34.

    Google Scholar 

  40. Mirani AG, Patankar SP, Borole VS, Pawar AS, Kadam VJ. Direct compression high functionality excipient using coprocessing technique: a brief review. Curr Drug Deliv. 2011;8(4):426–35.

    Article  CAS  PubMed  Google Scholar 

  41. Kumar R, Patil S, Patil MB, Patil SR, Paschapur MS. Formulation evaluation of mouth dissolving tablets of fenofibrate using sublimation technique. Int J Chem Tech Res. 2009;1(4):840–50.

    CAS  Google Scholar 

  42. Dudhat SM, Kettler CN, Dave RH. To study capping or lamination tendency of tablets through evaluation of powder rheological properties and tablet mechanical properties of directly compressible blends. AAPS PharmSciTech. 2017;18(4):1177–89.

    Article  CAS  PubMed  Google Scholar 

  43. Arida AI, Al-Tabakha MM. Cellactose® a co-processed excipient: a comparison study. Pharm Dev Technol. 2008;13(2):165–75.

    Article  CAS  PubMed  Google Scholar 

  44. York P, Pilpel N. The tensile strength and compression behaviour of lactose, four fatty acids, and their mixtures in relation to tableting. J Pharm Pharmacol. 1973;25:Suppl-1P.

    CAS  Google Scholar 

  45. Salpekar AM, Augsburger LL. Magnesium lauryl sulfate in tableting: effect on ejection force and compressibility. J Pharm Sci. 1974;63(2):289–93.

    Article  CAS  PubMed  Google Scholar 

  46. Khan KA, Rhodes CT. Effect of variation in compaction force on properties of six direct compression tablet formulations. J Pharm Sci. 1976;65(12):1835–7.

    Article  CAS  PubMed  Google Scholar 

  47. Sun CC. Dependence of ejection force on tableting speed—a compaction simulation study. Powder Technol. 2015;279:123–6.

    Article  CAS  Google Scholar 

  48. Nie L, Hu M, Yan X, Guo T, Wang H, Zhang S, et al. Optimization of a coupling process for insulin degludec according to a quality by design (QbD) paradigm. AAPS PharmSciTech. 2018;19(5):2185–94.

    Article  CAS  PubMed  Google Scholar 

  49. Taipale-Kovalainen K, Karttunen AP, Ketolainen J, Korhonen O. Lubricant based determination of design space for continuously manufactured high dose paracetamol tablets. Eur J Pharm Sci. 2018;115:1–10.

    Article  CAS  PubMed  Google Scholar 

  50. Casian T, Iurian S, Bogdan C, Rus L, Moldovan M, Tomuta I. QbD for pediatric oral lyophilisates development: risk assessment followed by screening and optimization. Drug Dev Ind Pharm. 2017;43(12):1932–44.

    Article  CAS  PubMed  Google Scholar 

  51. Barimani S, Šibanc R, Kleinebudde P. Optimization of a semi-batch tablet coating process for a continuous manufacturing line by design of experiments. Int J Pharm. 2018;539:95–103.

    Article  CAS  PubMed  Google Scholar 

  52. Ruegger CE, Çelik M. The influence of varying precompaction and main compaction profile parameters on the mechanical strength of compacts. Pharm Dev Technol. 2000;5(4):495–505.

    Article  CAS  PubMed  Google Scholar 

  53. Roberts M, Ford JL, Rowe PH, Dyas AM, MacLeod GS, Fell JT, et al. Effect of lubricant type and concentration on the punch tip adherence of model ibuprofen formulations. J Pharm Pharmacol. 2004;56(3):299–305.

    Article  CAS  PubMed  Google Scholar 

  54. Schiermeier S, Schmidt PC. Fast dispersible ibuprofen tablets. Eur J Pharm Sci. 2002;15(3):295–305.

    Article  CAS  PubMed  Google Scholar 

  55. Wang T, Alston KM, Wassgren CR, Mockus L, Catlin AC, Fernando SR, et al. The creation of an excipient properties database to support quality by design (QbD) formulation development. Am Pharm Rev. 2013;16(4):16–25.

    Google Scholar 

  56. Gohel MC, Parikh RK, Brahmbhatt BK, Shah AR. Improving the tablet characteristics and dissolution profile of ibuprofen by using a novel coprocessed superdisintegrant: a technical note. AAPS PharmSciTech. 2007;8(1):E94–9.

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank BASF (Ludwigshafen, Germany) for generously donating Ibuprofen DC 85 W and Meggle (Wasserburg, Germany) for Cellactose® 80 and MicroceLac® 100 for our Ph.D. thesis study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yildiz Ozalp.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiwa, N., Ozalp, Y., Yegen, G. et al. Critical Tools in Tableting Research: Using Compaction Simulator and Quality by Design (QbD) to Evaluate Lubricants’ Effect in Direct Compressible Formulation. AAPS PharmSciTech 22, 151 (2021). https://doi.org/10.1208/s12249-021-02004-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02004-y

KEY WORDS

Navigation