Skip to main content

Advertisement

Log in

Pharmaceutical and Pharmacological Evaluation of the Effect of Nano-Formulated Spironolactone and Progesterone on Inflammation and Hormonal Levels for Managing Hirsutism Experimentally Induced in Rats

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Hirsutism is a dermatological condition that refers to the excessive growth of hair in androgen-sensitive areas in women. Recently, the enhancement of the visible signs of a hairy female has taken special concern that affected the quality of life. The present study was developed to compare the follicular targeting effect of topical spironolactone (SP) or progesterone (PG)-loaded nanostructured lipid carrier (NLC) on the management of hirsutism. Four NLC formulations were prepared using cold homogenization techniques and pharmaceutically evaluated. SP-NLC and PG-NLC topical hydrogels were prepared to explore their pharmacological effect on letrozole induced polycystic ovarian syndrome (PCOS) in rats. Inflammatory mediators, antioxidant, and hormonal parameters were assayed. Additionally, histopathological examination was carried out to confirm the successful induction of PCOS. Results confirmed that all NLC formulations have a spherical shape with particle size ranged from 225.92 ± 0.41 to 447.80 ± 0.66 nm, entrapment efficiency > 75%, and zeta potential (− 31.4 to − 36.5 mV). F1 and F3 NLCs were considered as selected formulations for SP and PG, respectively. Female Wistar rats treated with F1 formulation for 3 weeks displayed better outcomes as manifested by the measured parameters as compared to the other tested groups. A significant reduction in hair follicle diameter and density was observed after topical application of SP or PG nano-gels. Finally, the outcomes pose a strong argument that the development of topically administered SP-NLC can be explored as a promising carrier over PG-NLC for more effectual improvement in the visible sign of hirsutism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hunter MH, Carek PJ. Evaluation and treatment of women with hirsutism. Am Fam Physician. 2003;67(12):2565–72.

    PubMed  Google Scholar 

  2. Archer JS, Chang RJ. Hirsutism and acne in polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol. 2004;18(5):737–54.

    Article  PubMed  Google Scholar 

  3. Chazenbalk G, Chen Y-H, Heneidi S, Lee J-M, Pall M, Chen Y-DI, et al. Abnormal expression of genes involved in inflammation, lipid metabolism, and Wnt signaling in the adipose tissue of polycystic ovary syndrome. J Clin Endocrinol Metab. 2012;97(5):E765–E70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Diamanti-Kandarakis E, Christakou CD. Insulin resistance in PCOS. Diagnosis and management of polycystic ovary syndrome: Springer; 2009. p. 35–61.

  5. Rebar R, Judd H, Yen S, Rakoff J, Vandenberg G, Naftolin F. Characterization of the inappropriate gonadotropin secretion in polycystic ovary syndrome. J Clin Invest. 1976;57(5):1320–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Endou H, Hosoyamada M. Potassium-retaining diuretics: aldosterone antagonists. Diuretics Handb Exp Pharmacol. 1995;117:335–61.

    Article  CAS  Google Scholar 

  7. Rathnayake D, Sinclair R. Innovative use of spironolactone as an antiandrogen in the treatment of female pattern hair loss. Dermatol Clin. 2010;28(3):611–708.

    Article  CAS  PubMed  Google Scholar 

  8. Chen W-C, Zouboulis CC. Hormones and the pilosebaceous unit. Dermatoendocrinol. 2009;1(2):81–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cumming DC, Yang JC, Rebar RW, Yen SS. Treatment of hirsutism with spironolactone. Jama. 1982;247(9):1295–8.

    Article  CAS  PubMed  Google Scholar 

  10. Macias H, Hinck L. Mammary gland development. Wiley Interdiscip Rev Dev Biol. 2012;1(4):533–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Burkman RT Jr. The role of oral contraceptives in the treatment of hyperandrogenic disorders. Am J Med. 1995;98(1):S130–S6.

    Article  Google Scholar 

  12. Müller R, Radtke M, Wissing S. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm. 2002;242(1-2):121–8.

    Article  PubMed  Google Scholar 

  13. Knorr F, Lademann J, Patzelt A, Sterry W, Blume-Peytavi U, Vogt A. Follicular transport route–research progress and future perspectives. Eur J Pharm Biopharm. 2009;71(2):173–80.

    Article  CAS  PubMed  Google Scholar 

  14. Kaur S, et al. Nanostructure lipid carrier (NLC): the new generation of lipid nanoparticles. Asian Pac J Health Sci. 2015;2:76–93.

    Article  Google Scholar 

  15. Nandvikar NY, Lala RR, Shinde AS. Nanostructured lipid carrier: the advanced lipid carriers. Int J Pharm Sci. 2019;10(12):5252–65.

    CAS  Google Scholar 

  16. Kurakula M, Ahmed OA, Fahmy UA, Ahmed TA. Solid lipid nanoparticles for transdermal delivery of avanafil: optimization, formulation, in-vitro and ex-vivo studies. J Liposome Res. 2016;26:288–96.

    Article  CAS  PubMed  Google Scholar 

  17. Upreti T, Senthil V. Nanostructured lipid carrier system for the treatment for skin disease—a review. JSM Nanotechnol Nanomed. 2017;5(3):1059–64.

    Google Scholar 

  18. Shekhawat PB. Preparation and evaluation of clotrimazole nanostructured lipid carrier for topical delivery. Int J Pharm Bio Sci. 2013;4:407–16.

    CAS  Google Scholar 

  19. Dong Y, Ng WK, Shen S, Kim S, Tan RB. Preparation and characterization of spironolactone nanoparticles by antisolvent precipitation. Int J Pharm. 2009;375(1-2):84–8.

    Article  CAS  PubMed  Google Scholar 

  20. Wissing S, Müller R. Solid lipid nanoparticles as carrier for sunscreens: in vitro release and in vivo skin penetration. J Control Release. 2002;81:225–33.

    Article  CAS  PubMed  Google Scholar 

  21. Csóka I, Csányi E, Zapantis G, Nagy E, Fehér-Kiss A, Horváth G, et al. In vitro and in vivo percutaneous absorption of topical dosage forms: case studies. Int J Pharm. 2005;291(1-2):11–9.

    Article  PubMed  CAS  Google Scholar 

  22. Yin-Ku L, Zih-Rou H, Rou-Zi Z, Jia-You F. Combination of calcipotriol and methotrexate in nanostructured lipid carriers for topical delivery. Int J Nanomedicine. 2010;5:117–28.

    Google Scholar 

  23. Friuli V, Bruni G, Musitelli G, Conte U, Maggi L. Influence of dissolution media and presence of alcohol on the in vitro performance of pharmaceutical products containing an insoluble drug. J Pharm Sci. 2018;107(1):507–11.

    Article  CAS  PubMed  Google Scholar 

  24. Rohman A, Nugroho A, Lukitaningsih E, Sudjadi. Application of vibrational spectroscopy in combination with chemometrics techniques for authentication of herbal medicine. Appl Spectrosc Rev. 2014;49:603–13.

    Article  CAS  Google Scholar 

  25. Mura, et al. Characterization and evaluation of different mesoporous silica kinds as carriers for the development of effective oral dosage forms of glibenclamide. Int J Pharm. 2019;563:43–52.

    Article  CAS  PubMed  Google Scholar 

  26. Joshi B, Singh G, Rana A, Saini S, Singla V. Emulgel: a comprehensive review on the recent advances in topical drug delivery. Int Res J Pharm. 2011;2(11):66–70.

    CAS  Google Scholar 

  27. Kafali H, Iriadam M, Ozardalı I, Demir N. Letrozole-induced polycystic ovaries in the rat: a new model for cystic ovarian disease. Arch Med Res. 2004;35(2):103–8.

    Article  CAS  PubMed  Google Scholar 

  28. Li Q, Cai T, Huang Y, Xia X, Cole S, Cai Y. A review of the structure, preparation, and application of NLCs, PNPs, and PLNs. Nanomaterials. 2017;7(6):122.

    Article  PubMed Central  CAS  Google Scholar 

  29. Manjunath K, Reddy JS, Venkateswarlu V. Solid lipid nanoparticles as drug delivery systems. Methods Find Exp Clin Pharmacol. 2005;27(2):127–44.

    Article  CAS  PubMed  Google Scholar 

  30. Zakir F, Vaidya B, Goyal AK, Malik B, Vyas SP. Development and characterization of oleic acid vesicles for the topical delivery of fluconazole. Drug Deliv. 2010;17(4):238–48.

    Article  CAS  PubMed  Google Scholar 

  31. Agrawal Y, Petkar KC, Sawant KK. Development, evaluation and clinical studies of acitretin loaded nanostructured lipid carriers for topical treatment of psoriasis. Int J Pharm. 2010;401(1-2):93–102.

    Article  CAS  PubMed  Google Scholar 

  32. Paruvathanahalli SR, Jestin C. Development and evaluation of nanostructured lipid carrier-based hydrogel for topical delivery of 5-fluorouracil. Int J Nanomedicine. 2016;11:5067–77.

    Article  Google Scholar 

  33. Chauhan I, et al. Nanostructured lipid carrier: the groundbreaking approach for transdermal drug delivery. Adv Pharm Bull. 2020;10(2):150–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gaba B, Fazil M, Khan S, Ali A, Baboota S, Ali J. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride. Bull Fac Pharm Cairo Univ. 2015;53(2):147–59.

    Google Scholar 

  35. Jiao J. Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Adv Drug Deliv Rev. 2008;60:1663–73.

    Article  CAS  PubMed  Google Scholar 

  36. Hu F-Q, Jiang S-P, Du Y-Z, Yuan H, Ye Y-Q, Zeng S. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surf B: Biointerfaces. 2005;45(3-4):167–73.

    Article  CAS  PubMed  Google Scholar 

  37. Lu GW, Gao P. Emulsions and microemulsions for topical and transdermal drug delivery. In: Kulkarni VS, editor. Handbook of Non-Invasive Drug Delivery Systems; 2010. p. 59–94.

    Chapter  Google Scholar 

  38. Xia D, Cui F, Gan Y, Mu H, Yang M. Design of lipid matrix particles for fenofibrate: effect of polymorphism of glycerol monostearate on drug incorporation and release. J Pharm Sci. 2014;103(2):697–705.

    Article  CAS  PubMed  Google Scholar 

  39. Shah S, Joshi S, Lin S, Madan P. Preparation and characterization of spironolactone solid dispersions using hydrophilic carriers. Asian J Pharm Sci. 2012;7(1):40–9.

    Google Scholar 

  40. Kumar N, Goindi S, Saini B, Bansal G. Thermal characterization and compatibility studies of itraconazole and excipients for development of solid lipid nanoparticles. J Therm Anal Calorim. 2014;115:2375–83.

    Article  CAS  Google Scholar 

  41. Seyfoddin A, Shaw J, Al-Kassas R. Solid lipid nanoparticles for ocular drug delivery. Drug Deliv. 2010;17:467–89.

    Article  CAS  PubMed  Google Scholar 

  42. Revathy S, Vrinda S. Kumar and Sabitha M. Omega-3 fatty acid based nanolipid formulation of atorvastatin for treating hyperlipidaemia. Adv Pharm Bull. 2019;9(2):271–80.

    Article  CAS  Google Scholar 

  43. Yang H, Lee SY, Lee SR, Pyun B-J, Kim HJ, Lee YH, et al. Therapeutic effect of Ecklonia Cava Extract In Letrozole-induced polycystic ovary syndrome rats. Front Pharmacol. 2018;9:1325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Caldwell A, Middleton L, Jimenez M, Desai R, McMahon A, Allan C, et al. Characterization of reproductive, metabolic, and endocrine features of polycystic ovary syndrome in female hyperandrogenic mouse models. Endocrinology. 2014;155(8):3146–59.

    Article  CAS  PubMed  Google Scholar 

  45. Choi S-H, Shapiro H, Robinson GE, Irvine J, Neuman J, Rosen B, et al. Psychological side-effects of clomiphene citrate and human menopausal gonadotrophin. J Psychosom Obstet Gynaecol. 2005;26(2):93–100.

    Article  CAS  PubMed  Google Scholar 

  46. Rezvanfar M, Rezvanfar M, Ahmadi A, Saadi HS, Baeeri M, Abdollahi M. Mechanistic links between oxidative/nitrosative stress and tumor necrosis factor alpha in letrozole-induced murine polycystic ovary: biochemical and pathological evidences for beneficial effect of pioglitazone. Hum Exp Toxicol. 2012;31(9):887–97.

    Article  CAS  PubMed  Google Scholar 

  47. Pandey V, Singh A, Singh A, Krishna A, Pandey U, Tripathi YB. Role of oxidative stress and low-grade inflammation in letrozole-induced polycystic ovary syndrome in the rat. Reprod Biol. 2016;16(1):70–7.

    Article  PubMed  Google Scholar 

  48. Christy NA, Franks AS, Cross LB. Spironolactone for hirsutism in polycystic ovary syndrome. Ann Pharmacother. 2005;39(9):1517–21.

    Article  CAS  PubMed  Google Scholar 

  49. Spritzer PM, Lisboa KO, Mattiello S, Lhullier F. Spironolactone as a single agent for long-term therapy of hirsute patients. Clin Endocrinol. 2000;52(5):587–94.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Fayez.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amer, R.I., Yassin, G.E., Mohamed, R.A. et al. Pharmaceutical and Pharmacological Evaluation of the Effect of Nano-Formulated Spironolactone and Progesterone on Inflammation and Hormonal Levels for Managing Hirsutism Experimentally Induced in Rats. AAPS PharmSciTech 22, 204 (2021). https://doi.org/10.1208/s12249-021-02003-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02003-z

KEY WORDS

Navigation