Skip to main content

Advertisement

Log in

Borneol: a Promising Monoterpenoid in Enhancing Drug Delivery Across Various Physiological Barriers

  • Review Article
  • Theme: Formulation and Delivery of Natural Products
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Incorporation of permeation enhancers is one of the most widely employed approaches for delivering drugs across biological membranes. Permeation enhancers aid in delivering drugs across various physiological barriers such as brain capillary endothelium, stratum corneum, corneal epithelium, and mucosal membranes that pose resistance to the entry of a majority of drugs. Borneol is a natural, plant-derived, lipophilic, volatile, bicyclic monoterpenoid belonging to the class of camphene. It has been used under the names “Bing Pian” or “Long Nao” in Traditional Chinese Medicine for more than 1000 years. Borneol has been incorporated predominantly as an adjuvant in the traditional Chinese formulations of centrally acting drugs to improve drug delivery to the brain. This background knowledge and anecdotal evidence have led to extensive research in establishing borneol as a permeation enhancer across the blood-brain barrier. Alteration in cell membrane lipid structures and modulation of multiple ATP binding cassette transporters as well as tight junction proteins are the major contributing factors to blood-brain barrier opening functions of borneol. Owing to these mechanisms of altering membrane properties, borneol has also shown promising potential to improve drug delivery across other physiological barriers as well. The current review focuses on the role of borneol as a permeation enhancer across the blood-brain barrier, mucosal barriers including nasal and gastrointestinal linings, transdermal, transcorneal, and blood optic nerve barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Homayun B, Lin X, Choi H-J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics [Internet]. 2019 [cited 2020 Nov 21];11. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471246/

  2. Yang R, Wei T, Goldberg H, Wang W, Cullion K, Kohane DS. Getting drugs across biological barriers. Adv Mater [Internet]. 2017 [cited 2020 Nov 21];29. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5683089/

  3. Mandal A, Patel M, Sheng Y, Mitra AK. Design of Lipophilic prodrugs to improve drug delivery and efficacy. Curr Drug Targets. 2016;17:1773–98.

    Article  CAS  PubMed  Google Scholar 

  4. Gunasekaran T, Haile T, Nigusse T, Dhanaraju MD. Nanotechnology: an effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac J Trop Biomed. 2014;4:S1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Maher S, Brayden DJ, Casettari L, Illum L. Application of Permeation enhancers in oral delivery of macromolecules: an update. Pharmaceutics [Internet]. 2019 [cited 2020 Nov 11];11. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359609/

  6. Marwah H, Garg T, Goyal AK, Rath G. Permeation enhancer strategies in transdermal drug delivery. Drug Deliv Taylor & Francis. 2016;23:564–78.

    CAS  Google Scholar 

  7. Fox LT, Gerber M, Plessis JD, Hamman JH. Transdermal drug delivery enhancement by compounds of natural origin. Molecules. 2011;16:10507–40.

    Article  PubMed Central  Google Scholar 

  8. Groussin A-L, Antoniotti S. Valuable chemicals by the enzymatic modification of molecules of natural origin: terpenoids, steroids, phenolics and related compounds. Bioresour Technol. 2012;115:237–43.

    Article  CAS  PubMed  Google Scholar 

  9. Pc R. (76) Inventor: Shmuel A. Ben-Sasson, Jerusalem (IL). :31.

  10. Yang H, Xun Y, Li Z, Hang T, Zhang X, Cui H. Influence of borneol on in vitro corneal permeability and on in vivo and in vitro corneal toxicity. J Int Med Res. 2009;37:791–802.

    Article  CAS  PubMed  Google Scholar 

  11. Zheng Q, Chen Z-X, Xu M-B, Zhou X-L, Huang Y-Y, Zheng G-Q, et al. Borneol, a messenger agent, improves central nervous system drug delivery through enhancing blood–brain barrier permeability: a preclinical systematic review and meta-analysis. Drug Deliv. 2018;25:1617–33.

  12. Chen Z, Xu Q, Shan C, Shi Y, Wang Y, Chang RC-C, et al. Borneol for regulating the permeability of the blood-brain barrier in experimental ischemic stroke: preclinical evidence and possible mechanism [Internet]. Oxidative Medicine and Cellular Longevity. Hindawi; 2019 [cited 2020 Nov 11]. p. e2936737. Available from: https://www.hindawi.com/journals/omcl/2019/2936737/

  13. Cao H-J, Liang S-B, Zhou W, Wu J-R, Zhang C-L. Evaluation of the adjunctive effect of Xing Nao Jing Injection for viral encephalitis. Medicine (Baltimore) [Internet]. 2019 [cited 2020 Nov 28];98. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485749/

  14. J W, L Y, L Y, W Z, S S, Q C, et al. Alteration of glutamate/GABA balance during acute alcohol intoxication in rats: effect of Xingnaojing injection. J Ethnopharmacol. 2015;166:333–9.

  15. Chun-jie W, Chun-jie W, Qin-wan H, Hong-yi Q, Ping G, Shi-xiang H. Promoting effect of borneol on the permeability of puerarin eye drops and timolol maleate eye drops through the cornea in vitro. Pharmazie. 2006;61:783–8.

  16. Wang Y, Wang A, Tian H, Wang H, Zou C. Determination of (-)-Borneol, Camphor and Isoborneol in Blumea balsamifera (L.) DC. leaves by simultaneous ultrasonic and microwave assisted extraction and gas chromatography. Asian J Chem. 2014;26:997–1001.

    Article  CAS  Google Scholar 

  17. Theobald U. Chinese Literature - Bencao yanyi 本草衍義 (www.chinaknowledge.de) [Internet]. Ulrich Theobald; [cited 2020 Nov 28]. Available from: http://www.chinaknowledge.de/Literature/Science/bencaoyanyi.html

  18. Wang S, Zhang D, Hu J, Jia Q, Xu W, Su D, et al. A clinical and mechanistic study of topical borneol-induced analgesia. EMBO Mol Med. 2017;9:802–15.

  19. Ben Cao Gang Mu (《本草纲目》 Compendium of Materia Medica) | United Nations Educational, Scientific and Cultural Organization [Internet]. [cited 2020 Nov 28]. Available from: http://www.unesco.org/new/en/communication-and-information/memory-of-the-world/register/full-list-of-registered-heritage/registered-heritage-page-1/ben-cao-gang-mu-compendium-of-materia-medica/

  20. Bhuiyan MNI, Chowdhury JU, Begum J. Chemical components in volatile oil from Blumea balsamifera (L.) DC. Bangladesh J Bot. 1970;38:107–9.

    Article  Google Scholar 

  21. Chen L, Su J, Li L, Li B, Li W. A new source of natural D-borneol and its characteristic. :8.

  22. Le T-X, Ho AS-H, Mah S-H, Wong T-W, Ong H-C, Loh PH-M, et al. Determination of borneol and other chemical compounds of essential oil of Dryobalanops aromatica exudate from Malaysia. Trop J Pharm Res. 2016;15:1293.

    Article  CAS  Google Scholar 

  23. Zhang Q-L, Fu BM, Zhang Z-J. Borneol, a novel agent that improves central nervous system drug delivery by enhancing blood–brain barrier permeability. Drug Deliv. 2017;24:1037–44.

    Article  CAS  PubMed  Google Scholar 

  24. Jianyu Su. Composition and biological activities of the essential oil extracted from a novel plant of Cinnamomum camphora Chvar. Borneol. J Med Plants Res [Internet]. 2012 [cited 2020 Nov 11];6. Available from: http://www.academicjournals.org/jmpr/abstracts/abstracts/abstracts2012/16May/Su%20et%20al.htm

  25. Silva ATM e, Pereira VV, Takahashi JA, Silva RR, Duarte LP. Microwave-assisted synthesis of borneol esters and their antimicrobial activity. Natural Product Research. Taylor & Francis; 2018;32:1714–1720.

  26. Fu M, Lu Z, Ma X. Enhanced extraction efficiency of natural D-borneol from Mei Pian tree leaves pretreated with deep eutectic solvents. Food Sci Nutr. 2020;8:3806–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li W, Chen R, Yang L, Huang T, Xu Q, Mi S, et al. Pharmacokinetics of natural borneol after oral administration in mice brain and its effect on excitation ratio. Eur J Drug Metab Pharmacokinet. 2012;37:39–44.

  28. Davis CM. Reduction of Camphor. :4.

  29. il_570xN.1957284565_sib6.jpg (570×760) [Internet]. [cited 2020 Dec 21]. Available from: https://i.etsystatic.com/18893007/r/il/2ad252/1957284565/il_570xN.1957284565_sib6.jpg

  30. Blumea_balsamifera_Blanco2.403-cropped.jpg (1070×1520) [Internet]. [cited 2020 Dec 21]. Available from: https://upload.wikimedia.org/wikipedia/commons/7/72/Blumea_balsamifera_Blanco2.403-cropped.jpg

  31. Chen Z, Gong X, Lu Y, Du S, Yang Z, Bai J, et al. Enhancing effect of borneol and muscone on geniposide transport across the human nasal epithelial cell monolayer. PLoS One. Public Library of Science; 2014;9:e101414.

  32. Wu Y, Wang S, Shang L, Zhang H, Qin J, Ren Y, et al. Effect of borneol as a penetration enhancer on brain targeting of nanoliposomes: facilitate direct delivery to neurons. Nanomedicine. 2018;13:2709–27.

  33. Deli M. Drug transport and the blood-brain barrier. solubility, delivery and ADME problems of drugs and drug-candidates. 2011. p. 144–65.

  34. Fan X, Chai L, Zhang H, Wang Y, Zhang B, Gao X. Borneol depresses P-glycoprotein function by a NF-κB signaling mediated mechanism in a blood brain barrier in vitro model. IJMS. 2015;16:27576–88.

  35. Wang S, Tan N, Ma C, Wang J, Jia P, Liu J, et al. Inhibitory effects of benzaldehyde, vanillin, muscone and borneol on P-glycoprotein in Caco-2 cells and everted gut sac. PHA Karger Publishers. 2018;101:269–77.

    CAS  Google Scholar 

  36. Yu B, Ruan M, Dong X, Yu Y, Cheng H. The mechanism of the opening of the blood–brain barrier by borneol: a pharmacodynamics and pharmacokinetics combination study. J Ethnopharmacol. 2013;150:1096–108.

    Article  CAS  PubMed  Google Scholar 

  37. Beaulieu É, Demeule M, Ghitescu L, Béliveau R. P-glycoprotein is strongly expressed in the luminal membranes of the endothelium of blood vessels in the brain. Biochem J Portland Press. 1997;326:539–44.

    CAS  Google Scholar 

  38. Cooray HC, Blackmore CG, Maskell L, Barrand MA. Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport. 2002;13:2059–63.

    Article  CAS  PubMed  Google Scholar 

  39. Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37:13–25.

    Article  CAS  PubMed  Google Scholar 

  40. Duan M, Xing Y, Guo J, Chen H, Zhang R. Borneol increases blood–tumour barrier permeability by regulating the expression levels of tight junction-associated proteins. Pharm Biol. 2016;54:3009–18.

    Article  CAS  PubMed  Google Scholar 

  41. Wang S, Miao W, Fang M, Nan Y, Meng X, Yu J, et al. Effect of borneol on the tissue distribution of notoginseng R1, ginsenoside Rg1 and Re in rabbits. Journal of the Fourth Military Medical University. Fourth Military Medical University; 2009;30:2750–2752.

  42. Chai G, Pan Y, Li F. Effect of borneol/mentholum eutectic mixture on nasal-brain delivery of neurotoxin loaded nanoparticles. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China journal of Chinese materia medica. 2009;34:698–701.

  43. Yu B, Lü GH, Sun Y, Lin X, Fang TH. Effect of electroacupuncture combined with intragastric administration of borneol on the permeability of blood-brain barrier in the mouse. Zhen ci yan jiu= Acupuncture research. 2011;36:335–340.

  44. Chen X, Lin Z, Liu A, Ye J, Luo Y, Luo Y, et al. The orally combined neuroprotective effects of sodium ferulate and borneol against transient global ischaemia in C57 BL/6J mice: neuroprotective effects of sodium ferulate. J Pharm Pharmacol. 2010;62:915–23.

  45. Dong XP, Ruan M, Yu B, Jin L, Zhu DQ, Fang TH. Effects of borneol at different doses on concentration of geniposide in rat brains. China Tradit Herb Drugs. 2012;43:1366–70.

    CAS  Google Scholar 

  46. Zhang Q, Wu D, Wu J, Ou Y, Mu C, Han B, et al. Improved blood–brain barrier distribution: effect of borneol on the brain pharmacokinetics of kaempferol in rats by in vivo microdialysis sampling. J Ethnopharmacol. 2015;162:270–7.

    Article  CAS  PubMed  Google Scholar 

  47. Martinho N, Damgé C, Reis CP. Recent Advances in Drug Delivery Systems. JBNB. 2011;02:510–26.

    Article  CAS  Google Scholar 

  48. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres M del P, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology [Internet]. 2018 [cited 2020 Dec 1];16. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145203/

  49. Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol. 2007;2:16.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wang X, Yang L. Chen Z (Georgia), Shin DM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin. 2008;58:97–110.

    Article  PubMed  Google Scholar 

  51. Amin ML, Joo JY, Yi DK, An SSA. Surface modification and local orientations of surface molecules in nanotherapeutics. J Control Release. 2015;207:131–42.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang Y, Liu S, Wan J, Yang Q, Xiang Y, Ni L, et al. Preparation, characterization and in vivo study of borneol-baicalin-liposomes for treatment of cerebral ischemia-reperfusion injury. Int J Nanomedicine. 2020;15:5977–89.

  53. Lv Z, Yang Y, Wang J, Chen J, Li J, Di L. Optimization of the preparation conditions of borneol-modified ginkgolide liposomes by response surface methodology and study of their blood brain barrier permeability. Molecules. 2018;23:303.

    Article  PubMed Central  Google Scholar 

  54. Schwartz S, Thiel E. Cerebral aspergillosis: tissue penetration is the key. Med Mycol. 2009;47:S387–93.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang S, Asghar S, Yang L, Hu Z, Chen Z, Shao F, et al. Borneol and poly (ethylene glycol) dual modified BSA nanoparticles as an itraconazole vehicle for brain targeting. Int J Pharm. 2020;575:119002.

  56. Meng L, Chu X, Xing H, Liu X, Xin X, Chen L, et al. Improving glioblastoma therapeutic outcomes via doxorubicin-loaded nanomicelles modified with borneol. Int J Pharm. 2019;567:118485.

  57. Guo X, Wu G, Wang H, Chen L. Pep-1&borneol–bifunctionalized carmustine-loaded micelles enhance anti-glioma efficacy through tumor-targeting and BBB-penetrating. J Pharm Sci. 2019;108:1726–35.

    Article  CAS  PubMed  Google Scholar 

  58. Xu X, Li J, Han S, Tao C, Fang L, Sun Y, et al. A novel doxorubicin loaded folic acid conjugated PAMAM modified with borneol, a nature dual-functional product of reducing PAMAM toxicity and boosting BBB penetration. Eur J Pharm Sci. 2016;88:178–90.

  59. Wu C, Liao Q, Yao M, Xu X, Zhou Y, Hou X, et al. Effect of natural borneol on the pharmacokinetics and distribution of nimodipine in mice. Eur J Drug Metab Pharmacokinet. 2014;39:17–24.

  60. Ren J, Zou M, Gao P, Wang Y, Cheng G. Tissue distribution of borneol-modified ganciclovir-loaded solid lipid nanoparticles in mice after intravenous administration. Eur J Pharm Biopharm. 2013;83:141–8.

    Article  CAS  PubMed  Google Scholar 

  61. Xin H-L, He X-R, Li W, Zhou Z-D, Zhang S, Wang G-J. The effect of borneol on the concentration of meropenem in rat brain and blood. J Asian Nat Prod Res. 2014;16:648–57.

    Article  CAS  PubMed  Google Scholar 

  62. Wu J-Y, Li Y-J, Yang L, Hu Y-Y, Hu X-B, Tang T-T, et al. Borneol and Α-asarone as adjuvant agents for improving blood–brain barrier permeability of puerarin and tetramethylpyrazine by activating adenosine receptors. Drug Deliv Taylor & Francis. 2018;25:1858–64.

  63. Yin Y, Cao L, Ge H, Duanmu W, Tan L, Yuan J, et al. l-Borneol induces transient opening of the blood–brain barrier and enhances the therapeutic effect of cisplatin. Neuro Report. 2017;28:506–13.

  64. Hong L, Li X, Bao Y, Duvall CL, Zhang C, Chen W, et al. Preparation, preliminary pharmacokinetic and brain targeting study of metformin encapsulated W/O/W composite submicron emulsions promoted by borneol. Eur J Pharm Sci. 2019;133:160–6.

  65. Hu X, Cheng N, Zhao J, Piao X, Yan Y, Zhang Q, et al. Percutaneous absorption and brain distribution facilitation of borneol on tetramethylpyrazine in a microemulsion-based transdermal therapeutic system. Asian J Pharm Sci. 2019;14:305–12.

  66. Ding J, Sun Y, Li J, Wang H, Mao S. Enhanced blood–brain barrier transport of vinpocetine by oral delivery of mixed micelles in combination with a message guider. J Drug Target. 2017;25:532–40.

    Article  CAS  PubMed  Google Scholar 

  67. Han S, Zheng H, Lu Y, Sun Y, Huang A, Fei W, et al. A novel synergetic targeting strategy for glioma therapy employing borneol combination with angiopep-2-modified, DOX-loaded PAMAM dendrimer. J Drug Target Taylor & Francis. 2018;26:86–94.

    Article  CAS  Google Scholar 

  68. Wen R, Zhang Q, Xu P, Bai J, Li P, Du S, et al. Xingnaojing mPEG 2000 -PLA modified microemulsion for transnasal delivery: pharmacokinetic and brain-targeting evaluation. Drug Dev Ind Pharm. 2016;42:926–35.

    Article  CAS  PubMed  Google Scholar 

  69. He H, Shen Q, Li J. Effects of borneol on the intestinal transport and absorption of two P-glycoprotein substrates in rats. Arch Pharm Res. 2011;34:1161–70.

    Article  CAS  PubMed  Google Scholar 

  70. Schwarz UI, Gramatté T, Krappweis J, Oertel R, Kirch W. P-glycoprotein inhibitor erythromycin increases oral bioavailability of talinolol in humans. CP. 2000;38:161–7.

    Article  CAS  Google Scholar 

  71. Aungst BJ. Intestinal permeation enhancers. J Pharm Sci. 2000;89:14.

    Article  Google Scholar 

  72. Tomita M, Hayashi M, Awazu S. Absorption-enhancing mechanism of EDTA, Caprate, and Decanoylcarnitine in Caco-2 cells. J Pharm Sci. 1996;85:608–11.

    Article  CAS  PubMed  Google Scholar 

  73. Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MNVR. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci. 2009;37:223–30.

    Article  CAS  PubMed  Google Scholar 

  74. Wang R, Wu Z, Yang S, Guo S, Dai X, Qiao Y, et al. A Molecular interpretation on the different penetration enhancement effect of borneol and menthol towards 5-Fluorouracil. Int J Mol Sci Multidisciplinary Digital Publishing Institute. 2017;18:2747.

    Google Scholar 

  75. Ym C, Ns W. Effect of borneol on the intercellular tight junction and pinocytosis vesicles in vitro blood-brain barrier model. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2004;24:632–4.

    Google Scholar 

  76. Vishwakarma N, Jain A, Sharma R, Mody N, Vyas S, Vyas SP. Lipid-based nanocarriers for lymphatic transportation. AAPS PharmSciTech. 2019;20:83.

    Article  CAS  PubMed  Google Scholar 

  77. Zhou Y, Li W, Chen L, Ma S, Ping L, Yang Z. Enhancement of intestinal absorption of akebia saponin D by borneol and probenecid in situ and in vitro. Environ Toxicol Pharmacol. 2010;29:229–34.

    Article  PubMed  Google Scholar 

  78. Ren-Zhong W, Yan-Yan X, Yan-Ping L, Mao-Jin Z, Chang-Xiao L. Enhancing effects of different dosages of borneol on pharmacokinetics of salvanic acid B after oral administration to rats. J Asian Nat Prod Res. 2012;14:538–44.

    Article  PubMed  Google Scholar 

  79. Su J, Chen J, Li L, Li B, Shi L, Zhang H, et al. Preparation of natural Borneol/2-Hydroxypropyl-β-cyclodextrin inclusion complex and its effect on the absorption of tetramethylpyrazine phosphate in mouse. Chem Pharm Bull. 2012;60:736–42.

  80. Ru G, Han L, Qing J, Sheng J, Li R, Qiu M, et al. Effects of borneol on the pharmacokinetics of 9-nitrocamptothecin encapsulated in PLGA nanoparticles with different size via oral administration. Drug Deliv. 2016;23:3417–23.

  81. Bao Y, Guo Y, Zhuang X, Li D, Cheng B, Tan S, et al. D-α-tocopherol polyethylene glycol succinate-based redox-sensitive paclitaxel prodrug for overcoming multidrug resistance in cancer cells. Mol Pharm. 2014;11:3196–209.

  82. Vasey PA. Resistance to chemotherapy in advanced ovarian cancer: mechanisms and current strategies. Br J Cancer. 2003;89:S23–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zou L, Wang D, Hu Y, Fu C, Li W, Dai L, et al. Drug resistance reversal in ovarian cancer cells of paclitaxel and borneol combination therapy mediated by PEG-PAMAM nanoparticles. Oncotarget Impact Journals. 2017;8:60453–68.

  84. Piazzini V, Landucci E, Urru M, Chiarugi A, Pellegrini-Giampietro DE, Bilia AR, et al. Enhanced dissolution, permeation and oral bioavailability of aripiprazole mixed micelles: In vitro and in vivo evaluation. Int J Pharm. 2020;583:119361.

  85. Yi T, Tang D, Wang F, Zhang J, Zhang J, Wang J, et al. Enhancing both oral bioavailability and brain penetration of puerarin using borneol in combination with preparation technologies. Drug Deliv. 2017;24:422–9.

  86. Jiang P, Fu P, Xiang L, Wang S, Liu X, Yang L, et al. The effectiveness of borneol on pharmacokinetics changes of four ginsenosides in Shexiang Baoxin Pill in vivo: effectiveness of borneol on pharmacokinetics changes of ginsenosides. Biomed Chromatogr. 2014;28:419–27.

  87. Liang S, Zeng Y, Jiang Q, Wu J, Wu Z. Pharmacokinetic studies of multi-bioactive components in rat plasma after oral administration of Xintiantai I extract and effects of guide drug borneol on pharmacokinetics. Chin Herb Med. 2020;12:79–87.

    Article  Google Scholar 

  88. Gao Y, Chen G, Luan X, Zou M, Piao H, Cheng G. Improved oral absorption of poorly soluble curcumin via the concomitant use of borneol. AAPS PharmSciTech. 2019;20:150.

    Article  PubMed  Google Scholar 

  89. Shen Q, Li X, Li W, Zhao X. Enhanced intestinal absorption of daidzein by borneol/menthol eutectic mixture and microemulsion. AAPS PharmSciTech. 2011;12:1044–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lu Y, Chen X, Du S, Wu Q, Yao Z, Zhai Y. The in situ and in vivo study on enhancing effect of borneol in nasal absorption of Geniposide in rats. Arch Pharm Res. 2010;33:691–6.

    Article  CAS  PubMed  Google Scholar 

  91. Liu J, Fu S, Wei N, Hou Y, Zhang X, Cui H. The effects of combined menthol and borneol on fluconazole permeation through the cornea ex vivo. Eur J Pharmacol. 2012;688:1–5.

    Article  CAS  PubMed  Google Scholar 

  92. Yang Y, Yin Y, Zhang J, Zuo T, Liang X, Li J, et al. Folate and borneol modified bifunctional nanoparticles for enhanced oral absorption. Pharmaceutics. 2018;10:146.

  93. Cai Z, Lei X, Lin Z, Zhao J, Wu F, Yang Z, et al. Preparation and evaluation of sustained-release solid dispersions co-loading gastrodin with borneol as an oral brain-targeting enhancer. Acta Pharm Sin B. 2014;4:86–93.

  94. Fortuna A, Alves G, Serralheiro A, Sousa J, Falcão A. Intranasal delivery of systemic-acting drugs: small-molecules and biomacromolecules. Eur J Pharm Biopharm. 2014;88:8–27.

    Article  CAS  PubMed  Google Scholar 

  95. Crowe TP, Greenlee MHW, Kanthasamy AG, Hsu WH. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018;195:44–52.

    Article  CAS  PubMed  Google Scholar 

  96. Erdő F, Bors LA, Farkas D, Bajza Á, Gizurarson S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull. 2018;143:155–70.

    Article  PubMed  Google Scholar 

  97. Su J, Lai H, Chen J, Li L, Wong Y-S, Chen T, et al. Natural borneol, a monoterpenoid compound, potentiates selenocystine-induced apoptosis in human hepatocellular carcinoma cells by enhancement of cellular uptake and activation of ROS-mediated DNA damage. Lee YJ, editor. PLoS One. 2013;8:e63502.

  98. Lu Y, Du S, Chen X, Wu Q, Song X, Xu B, et al. Enhancing effect of natural borneol on the absorption of geniposide in rat via intranasal administration. J Zhejiang Univ Sci B. 2011;12:143–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang L, Zhao X, Du J, Liu M, Feng J, Hu K. Improved brain delivery of pueraria flavones via intranasal administration of borneol-modified solid lipid nanoparticles. Nanomedicine. 2019;14:2105–19.

    Article  CAS  PubMed  Google Scholar 

  100. Tang S, Wang A, Yan X, Chu L, Yang X, Song Y, et al. Brain-targeted intranasal delivery of dopamine with borneol and lactoferrin co-modified nanoparticles for treating Parkinson's disease. Drug Deliv. 2019;26:700–7.

  101. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26:1261–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Thomas BJ, Finnin BC. The transdermal revolution. Drug Discov Today. 2004;9:697–703.

    Article  CAS  PubMed  Google Scholar 

  103. Chen Y, Quan P, Liu X, Wang M, Fang L. Novel chemical permeation enhancers for transdermal drug delivery. Asian J Pharm Sci. 2014;9:51–64.

    Article  Google Scholar 

  104. Dai X, Yin Q, Wan G, Wang R, Shi X, Qiao Y. Effects of concentrations on the transdermal permeation enhancing mechanisms of borneol: a coarse-grained molecular dynamics simulation on mixed-bilayer membranes. IJMS. 2016;17:1349.

    Article  Google Scholar 

  105. Yi Q-F, Yan J, Tang S-Y, Huang H, Kang L-Y. Effect of borneol on the transdermal permeation of drugs with differing lipophilicity and molecular organization of stratum corneum lipids. Drug Dev Ind Pharm. 2016;42:1086–93.

    Article  CAS  PubMed  Google Scholar 

  106. Yin Q, Wang R, Yang S, Wu Z, Guo S, Dai X, et al. Influence of temperature on transdermal penetration enhancing mechanism of borneol: a multi-scale study. International Journal of Molecular Sciences. Multidisciplinary Digital Publishing Institute; 2017;18:195.

  107. Jin L, Wang Z, Liu H, Yang H. Research on in-vitro percutaneous absorption and pharmacodynamics of Chinese herbal compound cremor for eczema with different mass concentrations of synthetic borneol. Journal of Guangzhou University of Traditional Chinese Medicine. 2017;34:719–24.

    Google Scholar 

  108. Jiang D, Tan H, Zhang R, Wang K, Zhang Y, Tan X, et al. Borneol-mediated vardenafil hydrochloride patch for pediatric pulmonary arterial hypertension: Preparation, characterization and in vivo study. Int J Pharm. 2020;591:119864.

  109. Xiao S, Yan Y, Zhao J, Zhang Y, Feng N. Increased microneedle-mediated transdermal delivery of tetramethylpyrazine to the brain, combined with borneol and iontophoresis, for MCAO prevention. Int J Pharm. 2020;575:118962.

    Article  CAS  PubMed  Google Scholar 

  110. Lin J, Ni K, Zhang Y, Wei D, Ren Y. Synthesis and evaluation of transdermal permeation, pharmacological activity of Bornyl NSAID Esters. LDDD. 2014;12:72–7.

    Article  Google Scholar 

  111. Zhang Y, Zhang N, Song H, Li H, Wen J, Tan X, et al. Design, characterization and comparison of transdermal delivery of colchicine via borneol-chemically-modified and borneol-physically-modified ethosome. Drug Deliv. 2019;26:70–7.

  112. Wadhwa S, Paliwal R, Paliwal SR, Vyas SP. Nanocarriers in ocular drug delivery: an update review. Curr Pharm Des. 2009;15:2724–50.

    Article  CAS  PubMed  Google Scholar 

  113. Kang-Mieler JJ, Osswald CR, Mieler WF. Advances in ocular drug delivery: emphasis on the posterior segment. Expert Opin Drug Deliv Taylor & Francis. 2014;11:1647–60.

    Article  CAS  Google Scholar 

  114. Molokhia SA, Thomas SC, Garff KJ, Mandell KJ, Wirostko BM. Anterior eye segment drug delivery systems: current treatments and future challenges. J Ocul Pharmacol Ther. 2013;29:92–105.

    Article  CAS  PubMed  Google Scholar 

  115. Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010;12:348–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Davies N. Biopharmaceutical considerations in topical ocular drug delivery. Clin Exp Pharmacol Physiol. 2000;27:558–62.

    Article  CAS  PubMed  Google Scholar 

  117. Moiseev RV, Morrison PWJ, Steele F, Khutoryanskiy VV. Penetration enhancers in ocular drug delivery. Pharmaceutics. 2019;11.

  118. Sultana Y, Jain R, Aqil M, Ali A. Review of ocular drug delivery. Curr Drug Deliv. 2006;3:207–17.

    Article  CAS  PubMed  Google Scholar 

  119. Yang H, Xun Y, Li Z, Hang T, Zhang X, Cui H. Influence of borneol on in vitro corneal permeability and on in vivo and in vitro corneal toxicity. J Int Med Res. 2009;37:791–802.

    Article  CAS  PubMed  Google Scholar 

  120. Song J, Bi H, Xie X, Guo J, Wang X, Liu D. Natural borneol enhances geniposide ophthalmic absorption in rabbits. Int J Pharm. 2013;445:163–70.

    Article  CAS  PubMed  Google Scholar 

  121. Qi H-P, Gao X-C, Zhang L-Q, Wei S-Q, Bi S, Yang Z-C, et al. In vitro evaluation of enhancing effect of borneol on transcorneal permeation of compounds with different hydrophilicities and molecular sizes. Eur J Pharmacol. 2013;705:20–5.

  122. Huang L, Bai J, Yang H, Liu J, Cui H. Combined use of borneol or menthol with labrasol promotes penetration of baicalin through rabbit cornea in vitro. Pak J Pharm Sci. 2015;28:1–7.

    CAS  PubMed  Google Scholar 

  123. Li Z, Sun D, Yang H, Liu X, Luan L, Bai J, et al. Effect of borneol on the distribution of Danshensu to the eye in rabbit via oral administration. Curr Eye Res Taylor & Francis. 2010;35:565–72.

  124. Ma Q, Dai M, Zhang H, Bai L, He N. Effect of different doses of borneol on the pharmacokinetics of vinpocetine in rat plasma and brain after intraocular administration. Xenobiotica. 2020;50:580–7.

    Article  CAS  PubMed  Google Scholar 

  125. Jin D, Wang F, Qu L, Li Z, Jin L, Liu P, et al. The distribution and expression of claudin-5 and occludin at the rat blood–optic nerve barrier after borneol treatment. Mol Biol Rep. 2011;38:913–20.

  126. Liang L, Bai Y, Tang Y, Chen Q, Li X, Ma Q, et al. Contribution of borneolum syntheticum to the intervention effect of Liuwei Dihuang Pill (六味地黄丸) on experimental retinal degeneration. Chin J Integr Med. 2016;24.

  127. Lu Y, Du S, Yao Z, Zhao P, Zhai Y. Study on natural borneol and synthetic borneol affecting mucosal permeability of gardenia extract. Zhongguo Zhong Yao Za Zhi. 2009;34:1207–10.

    CAS  PubMed  Google Scholar 

  128. Hu L, Fan G, Gao X. Comparison of influence of natural borneol and synthetic borneol on gastric mucosal barrier in rats. J Tianjin University TCM. 2005;3.

  129. Wang Y, Gao X, Zhang B. Pharmacodynamic comparison of natural Bingpian (Borneol) with compound Bingpian in Compound Dripping Pill of Danshen.  J Tianjin University TCM. 2003;2.

  130. Chang L, Yin C-Y, Wu H-Y, Tian B-B, Zhu Y, Luo C-X, et al. (+)-Borneol is neuroprotective against permanent cerebral ischemia in rats by suppressing production of proinflammatory cytokines. J Biomed Res. 2017;31:306–14.

  131. Commission CP. China Medical Science Press; Beijing: 2015. Pharmacopoeia of the People’s Republic of China.

  132. 0242.pdf [Internet]. [cited 2021 Feb 20]. Available from: https://nj.gov/health/eoh/rtkweb/documents/fs/0242.pdf

  133. [cited 2021 Feb 20]. Available from: https://fscimage.fishersci.com/msds/33824.htm

  134. Yang H, Xun Y, Li Z, Hang T, Zhang X, Cui H. Influence of borneol on in vitro corneal permeability and on in vivo and in vitro corneal toxicity. J Int Med Res. 2009;37:791–802.

    Article  CAS  PubMed  Google Scholar 

  135. Qi H-P, Gao X-C, Zhang L-Q, Wei S-Q, Bi S, Yang Z-C, et al. In vitro evaluation of enhancing effect of borneol on transcorneal permeation of compounds with different hydrophilicities and molecular sizes. Eur J Pharmacol. 2013;705:20–5.

  136. Bhatia SP, McGinty D, Letizia CS, Api AM. Fragrance material review on l-borneol. Food Chem Toxicol. 2008;46:S81–4.

    PubMed  Google Scholar 

  137. Wang S, Zhang D, Hu J, Jia Q, Xu W, Su D, et al. A clinical and mechanistic study of topical borneol-induced analgesia. EMBO Mol Med. 2017;9:802–15.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhur Kulkarni.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Guest Editors: Harsh Chauhan, Abhijit Date and Sonali Dhindwal

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, M., Sawant, N., Kolapkar, A. et al. Borneol: a Promising Monoterpenoid in Enhancing Drug Delivery Across Various Physiological Barriers. AAPS PharmSciTech 22, 145 (2021). https://doi.org/10.1208/s12249-021-01999-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-01999-8

KEY WORDS

Navigation