Skip to main content
Log in

Coating characterization by hyperspectroscopy and predictive dissolution models of tablets coated with blends of cellulose acetate and cellulose acetate phthalate

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

ABSTRACT

The objective of current research was to develop the models of dissolution prediction of tablets coated with cellulose acetate (CA 320S or CA 398-10) and cellulose acetate phthalate (C-A-P) blends. Independent variables selected were coating percent (X1) and percent of CA 320S or CA 398-10 (X2) in the blend. Dependent variables selected were dissolution in 1 (Y1), 8 (Y2), and 24 h (Y3). Diclofenac sodium core tablets were coated with blend of either CA 320S and C-A-P or CA 398-10 and C-A-P at approximately 5, 7.5, and 10% weight gain. CA 320S and CA 398-10 content in the corresponding blends varied from 33.3-66.7% and 25.0-50.0% relative to C-A-P, respectively. Dissolution was performed in phosphate buffer 6.8 using USP apparatus 2. Coated tablets were also characterized for surface morphology and coating uniformity by near infrared hyperspectroscopy. Y1, Y2, and Y3 were statistically (p < 0.05) affected by X2 in CA 320S/C-A-P and CA 398-10/C-A-P blends coated tablets. On the other hand, X1 had statistically significant (p < 0.05) effect only on the Y3 in CA 320S/C-A-P while Y1 was statistically (p < 0.05) affected by X2 in CA 398-10/C-A-P. Analysis of variance also indicated statistically significant (p < 0.05) effect of the studied variables on the dependent variables for both the blends. The models were verified by independent experiment. Model predicted and empirical values of Y1, Y2, and Y3 were close with maximum residual of 7.0%. In conclusion, dissolution can be modulated by varying composition of blend, polymer type, and coating weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. Češková E, Šedová M, Kellnerová R, Starobová O. Once-a-day trazodone in the treatment of depression in routine clinical practice. Pharmacology. 2018;102(3-4):206–12.

    Article  Google Scholar 

  2. Wang M, Wang M, Zhang Q, Zong S, Lv C. Pharmacokinetics and safety of levetiracetam extended-release tablets and relative bioavailability compared with immediate-release tablets in healthy Chinese subjects. Eur J Drug Metab Pharmacokinet. 2018;43(4):405–13.

    Article  CAS  Google Scholar 

  3. Torabi J, Konicki A, Rocca JP, Ajaimy M, Campbell A, Azzi Y, et al. Utilization of LCP-Tacrolimus (Envarsus XR) in simultaneous pancreas and kidney (SPK) transplant recipients. Am J Surg. 2020;219:583–6.

    Article  Google Scholar 

  4. Sánchez Fructuoso A, Ruiz JC, Franco A, Diekmann F, Redondo D, Calviño J, et al. Effectiveness and safety of the conversion to MeltDose® extended-release tacrolimus from other formulations of tacrolimus in stable kidney transplant patients: A retrospective study. Clin Transpl. 2020;34(1):e13767.

    Article  Google Scholar 

  5. Banach M, Miziak B, Borowicz-Reutt KK, Czuczwar SJ. Advances with extended and controlled release formulations of antiepileptics in the elderly. Expert Opin Pharmacother. 2019;20(3):333–41.

    Article  Google Scholar 

  6. Zahoor FD, Mader KT, Timmins P, Brown J, Sammon C. Investigation of within-tablet dynamics for extended release of a poorly soluble basic drug from hydrophilic matrix tablets using ATR–FTIR imaging. Mol Pharm. 2020;17(4):1090–9.

    Article  CAS  Google Scholar 

  7. Gundu R, Pekamwar S, Shelke S, Shep S, Kulkarni D. Sustained release formulation of Ondansetron HCl using osmotic drug delivery approach. Drug Dev Ind Pharm. 2020;46(3):343–55.

    Article  CAS  Google Scholar 

  8. Depakote ER FDA label. Accessed on June 23, 2020 https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/021168s041lbl.pdf.

  9. Tegretol®-XR FDA label. Accessed on June 23, 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/016608s115_018281_s058_018927s055_020234_s047.pdf.

  10. Concerta® FDA label. Accessed on June 23, 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/021121s038lbl.pdf.

  11. Embeda® FDA label. Accessed on June 23, 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/022321s030lbl.pdf.

  12. Aggrenox® FDA label. Accessed on June 23, 2020. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/020884s039lbledt.pdf.

  13. Ali SF, Afrooz H, Hampel R, Mohamed EM, Bhattacharya R, Cook P, et al. Blend of cellulose ester and enteric polymers for delayed and enteric coating of core tablets of hydrophilic and hydrophobic drugs. Int J Pharm. 2019;567:118462.

    Article  CAS  Google Scholar 

  14. Mwila C, Walker RB. Improved Stability of Rifampicin in the Presence of Gastric-Resistant Isoniazid Microspheres in Acidic Media. Pharmaceutics. 2020;12(3):234.

    Article  CAS  Google Scholar 

  15. Eudragit®. Accessed on June 23, 2020. https://healthcare.evonik.com/sites/lists/NC/DocumentsHC/Evonik-Eudragit_brochure.pdf.

  16. Sato H, Uraki Y, Kishimoto T, Sano Y. New process for producing cellulose acetate from wood in concentrated acetic acid. Cellulose. 2003;10(4):397–404.

    Article  CAS  Google Scholar 

  17. Puls J, Wilson SA, Hölter D. Degradation of cellulose acetate-based materials: a review. J Polym Environ. 2011;19(1):152–65.

    Article  CAS  Google Scholar 

  18. FDA Inactive ingredients database. Accessed on June 24, 2020. https://www.accessdata.fda.gov/scripts/cder/iig/index.cfm?event=BasicSearch.page.

  19. USP43-NF38 – Cellulose acetate, page 5701, 2020.

  20. Ranjan OP, Nayak UY, Reddy MS, Dengale SJ, Musmade PB, Udupa N. Osmotically controlled pulsatile release capsule of montelukast sodium for chronotherapy: statistical optimization, in vitro and in vivo evaluation. Drug Deliv. 2014;21(7):509–18.

    Article  CAS  Google Scholar 

  21. Tsiapla AR, Karagkiozaki V, Bakola V, Pappa F, Gkertsiou P, Pavlidou E, et al. Biomimetic and biodegradable cellulose acetate scaffolds loaded with dexamethasone for bone implants. Beilstein J Nanotechnol. 2018;9(1):1986–94.

    Article  CAS  Google Scholar 

  22. Guarino V, Caputo T, Calcagnile P, Altobelli R, Demitri C, Ambrosio L. Core/shell cellulose-based microspheres for oral administration of Ketoprofen Lysinate. J Biomed Mater Res B Appl Biomater. 2018;106(7):2636–44.

    Article  CAS  Google Scholar 

  23. Liakos IL, Abdellatif MH, Innocenti C, Scarpellini A, Carzino R, Brunetti V, et al. Antimicrobial lemongrass essential oil—copper ferrite cellulose acetate nanocapsules. Molecules. 2016;21(4):520.

    Article  Google Scholar 

  24. Liakos IL, D’autilia F, Garzoni A, Bonferoni C, Scarpellini A, Brunetti V, et al. All natural cellulose acetate—Lemongrass essential oil antimicrobial nanocapsules. Int J Pharm. 2016;510(2):508–15.

    Article  CAS  Google Scholar 

  25. Wsoo MA, Shahir S, Bohari SP, Nayan NH, Abd Razak SI. A review on the properties of electrospun cellulose acetate and its application in drug delivery systems: A new perspective. Carbohydr Res. 2020s;5:107978.

    Article  Google Scholar 

  26. Ali SF, Dharani S, Afrooz H, Mohamed EM, Cook P, Khan MA, et al. Development of Abuse-Deterrent Formulations Using Sucrose Acetate Isobutyrate. AAPS PharmSciTech. 2020;21(3):1–4.

    Google Scholar 

  27. Voltaren®-XR FDA label. Accessed on March 03, 2021. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/020254s028lbl.pdf.

  28. Voltaren® FDA label. Accessed on March 03, 2021. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/019201s046lbl.pdf.

  29. Rahman Z, Dharani S, Ali SF, Afrooz H, Reddy IK, Khan MA. Effect of processing parameters and controlled environment storage on the disproportionation and dissolution of extended-release capsule of phenytoin sodium. Int J Pharm. 2018;550(1-2):290–9.

    Article  CAS  Google Scholar 

  30. ICH harmonized tripartite guideline—Validation of analytical procedures: Text and methodology Q2 (R1), 2005.

  31. Sakai T, Hirai D, Kimura SI, Iwao Y, Itai S. Effects of tablet formulation and subsequent film coating on the supersaturated dissolution behavior of amorphous solid dispersions. Int J Pharm. 2018;540(1-2):171–7.

    Article  CAS  Google Scholar 

  32. Porter SC, Ridgway K. The permeability of enteric coatings and the dissolution rates of coated tablets. J Pharm Pharmacol. 1982;34(1):5–8.

    Article  CAS  Google Scholar 

  33. Chopra S, Patil GV, Motwani SK. Release modulating hydrophilic matrix systems of losartan potassium: Optimization of formulation using statistical experimental design. Eur J Pharm Biopharm. 2007;66(1):73–82.

    Article  CAS  Google Scholar 

  34. Rahman Z, Xu X, Katragadda U, Krishnaiah YS, Yu L, Khan MA. Quality by design approach for understanding the critical quality attributes of cyclosporine ophthalmic emulsion. Mol Pharm. 2014;11(3):787–99.

    Article  CAS  Google Scholar 

  35. Wulff R, Leopold CS. Coatings of Eudragit® RL and L-55 blends: investigations on the drug release mechanism. AAPS PharmSciTech. 2016;17(2):493–503.

    Article  CAS  Google Scholar 

  36. Hou Y, Wang H, Zhang X, Zou M, Cheng G. Study of the mechanism of cationic drug release increase coated with Surelease® after curing. Asian J Pharm Sci. 2013;8(5):295–302.

    Article  Google Scholar 

  37. EastmanTM Cellulose acetate (CA 398-10 NF/EP)—Technical datasheet. Accessed on July 07, 2020. https://productcatalog.eastman.com/tds/ProdDatasheet.aspx?product=71051329&pn=Cellulose+Acetate+-+CA-398-10NF%2fEP+(National+Formulary+and+European+Pharmacopoeia)#_ga=2.161618940.1511400293.1594055117-1166129648.1591652891.

  38. EastmanTM Cellulose acetate (CA 320S NF/EP)—Technical datasheet. Accessed on July 07, 2020. https://productcatalog.eastman.com/tds/ProdDatasheet.aspx?product=71063628&pn=Cellulose+Acetate+-+CA-320S+NF%2fEP+(National+Formulary+and+European+Pharmacopoeia)#_ga=2.161618940.1511400293.1594055117-1166129648.1591652891.

  39. Sarisuta N, Parrott EL. Relationship of dissolution rate to viscosity of polymeric solutions. J Pharm Sci. 1982;71(12):1375–80.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyaur Rahman.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khuroo, T., Mohamed, E.M., Dharani, S. et al. Coating characterization by hyperspectroscopy and predictive dissolution models of tablets coated with blends of cellulose acetate and cellulose acetate phthalate. AAPS PharmSciTech 22, 122 (2021). https://doi.org/10.1208/s12249-021-01986-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-01986-z

KEY WORDS

Navigation