Skip to main content

Advertisement

Log in

Egg White Protein Carrier-Assisted Development of Solid Dispersion for Improved Aqueous Solubility and Permeability of Poorly Water Soluble Hydrochlorothiazide

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Hydrochlorothiazide (HTZ) is a first-line drug used in the treatment of hypertension suffered from low oral bioavailability due to poor aqueous solubility and permeability. Hence, lyophilized egg white protein-based solid dispersion (HTZ-EWP SD) was developed to explore its feasibility as a solid dispersion carrier for enhanced aqueous solubility and permeability of HTZ. The HTZ-EWP SD was prepared using the kneading method. HTZ-EWP SD was characterized using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transforms infrared spectroscopy (FT-IR), powder X-ray diffractometer (PXRD), solubility, in vitro dissolution, and ex vivo permeation studies. The physico-chemical evaluation suggested the formation of the solid dispersion. Optimized HTZ-EWP SD4 drastically enhanced (~32-fold) aqueous solubility (~16.12 ± 0.08 mg/mL) over to pure HTZ (~ 0.51 ± 0.03 mg/mL). The dissolution study in phosphate buffer media (pH 6.8) revealed that HTZ-EWP SD4 significantly enhanced the release rate of HTZ (~ 87 %) over to HTZ (~ 25 %). The permeation rate of HTZ from optimized HTZ-EWP SD4 was enhanced significantly (~ 84 %) compared to pure HTZ (~ 24 %). Optimized HTZ-EWP-SD4 enhanced the rate of HTZ dissolution (~ 86 %) in FeSSIF (fed state simulated intestinal fluid), compared to a low dissolution rate (~ 72 %) in FaSSIF (fasted state simulated intestinal fluid) state after 2-h study. Obtained results conclude that lyophilized egg white protein can be utilized as an alternative solid dispersion carrier for enhancing the solubility and permeability of HTZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mendes C, Buttchevitz A, Kruger JH, et al. Self-nanoemulsified drug delivery system of HTZ for increasing dissolution rate and diuretic activity. AAPS PharmSciTech. 2017;18(7):2494–504. https://doi.org/10.1208/s12249-017-0735-z.

    Article  CAS  PubMed  Google Scholar 

  2. Larbi OC, Merine H, Ramli Y, et al. Enhancement of the dissolution profile of the diuretic HTZ by elaboration of microspheres. J Serb Chem Soc. 2018;83(11):1243–59. https://doi.org/10.2298/JSC171112065L.

    Article  CAS  Google Scholar 

  3. Chadha R, Bhandari S, Kataria D, Gupta G, Jain DS. Exploring the potential of lecithin/chitosan nanoparticles in enhancement of antihypertensive efficacy of hydrochlorothiazide. J Microencapsul. 2012;29(8):805–12. https://doi.org/10.3109/02652048.2012.692399.

    Article  CAS  PubMed  Google Scholar 

  4. Barbhaiya RH, Craig WA, Corrick-West P, Welling PG. Pharmacokinetics of hydrochlorothiazide in Fasted and Nonfasted Subjects: A Comparison of Plasma Level and Urinary Excretion Methods. J Pharm Sci. 1982;71(2):245–8. https://doi.org/10.1002/jps.2600710226.

    Article  CAS  PubMed  Google Scholar 

  5. Patel RB, Patel UR, Rogge MC, Shah VP, Selen A, Welling PG. Bioavailability of hydrochlorothiazide from tablets and suspensions. J Pharm Sci. 1984;73(3):359–61. https://doi.org/10.1002/jps.2600730317.

    Article  CAS  PubMed  Google Scholar 

  6. Yu LX, Amidon GL, Polli JE, et al. Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharm Res. 2002;19(7):921–5. https://doi.org/10.1023/a:1016473601633.

    Article  CAS  PubMed  Google Scholar 

  7. Yadav PS, Yadav E, Verma A, Amin S. Development, characterization, and pharmacodynamic evaluation of hydrochlorothiazide loaded self-nanoemulsifying drug delivery systems. Sci World J. 2014:1–10. https://doi.org/10.1155/2014/274823.

  8. Vervaet C, Baert L, Remon JP. Enhancement of in vitro drug release by using polyethylene glycol 400 and PEG-40 hydrogenated castor oil in pellets made by extrusion/spheronisation. Int J Pharm. 1994;108:207–12. https://doi.org/10.1016/0378-5173(94)90129-5.

    Article  CAS  Google Scholar 

  9. Vervaet C, Remon JP. Bioavailability of hydrochlorothiazide from pellets, made by extrusion/spheronization, containing polyethylene glycol 400 as a dissolution enhancer. Pharm Res. 1997;14(11):1644–6. https://doi.org/10.1023/A:1012151006742.

    Article  CAS  PubMed  Google Scholar 

  10. Pires MAS, dos Santos RAS, Sinisterra RD. Pharmaceutical composition of HTZ: β-cyclodextrin: preparation by three different methods, physico-chemical characterization, and in vivo diuretic activity evaluation. Molecules. 2011; 16:4482-4499. https://doi.org/10.3390/molecules16064482.

  11. Altamimi MA, Elzayat EM, Alhowyan AA, Alshehri S, Shakeel F. Effect of β-cyclodextrin and different surfactants on solubility stability, and permeability of hydrochlorothiazide. J Mol Liq. 2018;250:323–8. https://doi.org/10.1016/j.molliq.2017.12.006.

    Article  CAS  Google Scholar 

  12. Kadam Y, Yerramilli U, Bahadur A, Bahadur P. Micelles from PEO-PPO-PEO block copolymers as nanocontainers for solubilization of a poorly water soluble drug hydrochlorothiazide. Colloids Surf B: Biointerfaces. 2011;83:49–57. https://doi.org/10.1016/j.colsurfb.2010.10.041.

    Article  CAS  PubMed  Google Scholar 

  13. Sangeetha E, Rao VU, Sudhakar M, Manisha S. Enhancement of solubility and bioavailability of hydrochlorthiazide using solid dispersion technique. American J Adv Drug Deli. 2015;3:308–16.

    CAS  Google Scholar 

  14. Mendes C, Buttchevitz A, Kruger JH, et al. Chitosan microencapsulation of the dispersed phase of an O/W nanoemulsion to hydrochlorothiazide delivery. J of Microemulsion. 2017;34:611–22. https://doi.org/10.1080/02652048.2017.1373155.

    Article  CAS  Google Scholar 

  15. Karavas E, Georgarakis E, Sigalas MP, Avgoustakis K, Bikiaris D. Investigation of the release mechanism of a sparingly water-soluble drug from solid dispersions in hydrophilic carriers based on physical state of drug, particle size distribution and drug-polymer interactions. Eur J Pharm Biopharm. 2007;66:334–47. https://doi.org/10.1016/j.ejpb.2006.11.020.

    Article  CAS  PubMed  Google Scholar 

  16. Bikiaris D, Papageorgiou GZ, Stergiou A, et al. Physicochemical studies on solid dispersions of poorly water-soluble drugs Evaluation of capabilities and limitations of thermal analysis techniques. Thermochim Acta. 2005;439:58–67. https://doi.org/10.1016/j.tca.2005.09.011.

    Article  CAS  Google Scholar 

  17. Al-Hamidi H, Edwards AA, Mohammad MA, Nikhodchi A. To enhance the dissolution rate of poorly water-soluble drugs: glucosamine hydrochloride as a potential carrier in solid dispersion formulations. Colloids Surf B: Biointerfaces. 2010;76(1):170–8. https://doi.org/10.1016/j.colsurfb.2009.10.030.

    Article  CAS  PubMed  Google Scholar 

  18. Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. J Pharm Sci. 1971;60:1281–302. https://doi.org/10.1002/jps.2600600902.

    Article  CAS  PubMed  Google Scholar 

  19. Serajuddin ATM. Solid dispersion of poorly water soluble drugs: Early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999;88(10):1058–66. https://doi.org/10.1021/js980403l.

    Article  CAS  PubMed  Google Scholar 

  20. Huang YG. Dai. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B. 2014;4(1):18–25. https://doi.org/10.1016/j.apsb.2013.11.001.

    Article  PubMed  Google Scholar 

  21. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as a strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12:1068–75. https://doi.org/10.1016/j.drudis.2007.09.005.

    Article  CAS  PubMed  Google Scholar 

  22. Kovacs-Nolan JKN, Phillips M, Mine Y. Advances in the value of eggs and egg components for human health. J Agric Food Chem. 2005;53:8421–31. https://doi.org/10.1021/jf050964f.

    Article  CAS  PubMed  Google Scholar 

  23. Huntington JA, Stein PE. Structure and properties of ovalbumin. J Chromatogr B Biomed Sci Appl. 2001;756:189–98. https://doi.org/10.1016/S0378-4347(01)00108-6.

    Article  CAS  PubMed  Google Scholar 

  24. Liu Y, Cai Y, Ying D. Ying D, Fu Y, Xiong Y, Le X. Ovalbumin as a carrier to significantly enhance the aqueous solubility and photostability of curcumin: Interaction and binding mechanism study. Int J Biol Macromol 2018; 116:893-900. https://doi.org/10.1016/j.ijbiomac.2018.05.089.

  25. Chen Y, Hu J, Yi X, Ding B, Sun W, Yan F, et al. Interactions and emulsifying properties of ovalbumin with tannic acid. LWT Food Sci Technol. 2018;95:282–8. https://doi.org/10.1016/j.lwt.2018.04.088.

    Article  CAS  Google Scholar 

  26. Jia W, Cui B, Ye T, Lin L, Zheng H, Yan X, et al. Phase behavior of ovalbumin and carboxymethylcellulose composite system. Carbohydr Polym. 2014;109:64–70. https://doi.org/10.1016/j.carbpol.2014.03.026.

    Article  CAS  PubMed  Google Scholar 

  27. Li Z, Kuang H, Yang J, Hu J, Ding B, Sun W, et al. Improving emulsion stability based on ovalbumin-carboxymethyl cellulose complexes with thermal treatment near ovalbumin isoelectric point. Sci Rep. 2020;10:34–56. https://doi.org/10.1038/s41598-020-60455-y.

    Article  CAS  Google Scholar 

  28. He W, Tan Y, Tian Z, Chen L, Hu F, Wu W. Food protein-stabilized nanoemulsions as potential delivery systems for poorly water-soluble drugs: preparation, in vitro characterization, and pharmacokinetics in rats. Int J Nanomedicine. 2011;6:521–33. https://doi.org/10.2147/IJN.S17282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Omana DA, Wang J, Wu J. Co-extraction of egg white proteins using ion-exchange chromatography from ovomucin-removed egg whites. J Chromatogr B. 2010;878:1771–6. https://doi.org/10.1016/j.jchromb.2010.04.037.

    Article  CAS  Google Scholar 

  30. Hiidenhovi J, Aro HS, Kankare V. Separation of ovomucin subunits by gel filtration: enhanced resolution of subunits by using a dual-column system. J Agric Food Chem. 1999;47:1004–8. https://doi.org/10.1021/jf9811774.

  31. Iqbal S, Batool J, Ajaz M, Ambree N, Akhlaq M. Impact of egg white protein on the quality and stability of corn oil-in-water emulsion. J Chem Soc Pak. 2017;39:911–8.

    CAS  Google Scholar 

  32. Wang S, Marcone MF, Barbut S, Lim L-T. Fortification of dietary biopolymers-based packaging material with bioactive plant extracts. Food Res Int. 2012;49:80–91. https://doi.org/10.1016/j.foodres.2012.07.023.

    Article  CAS  Google Scholar 

  33. Baloch MK, Hameed G, Iqbal S, Bano A, Rehman W. Extension of the taylor equation for oil-water surfactant system and investigating the impact of surfactant concentration over the quality of emulsion. J Dispers Sci Technol. 2011;32:498–506. https://doi.org/10.1080/01932691003756845.

    Article  CAS  Google Scholar 

  34. Imai T, Saito Y, Matsumoto H, Satosh T, Otagiri M. Influence of egg albumin on dissolution of several drugs. Int J Pharm. 1989;53:7–12. https://doi.org/10.1016/0378-5173(89)90355-4.

    Article  CAS  Google Scholar 

  35. Imai T, Nohdoi K, Acarturk F, Otagiri M. Enhancement of dissolution and absorption of mefenamic acid by egg albumin. J Pharm Sci. 1991;80:484–7. https://doi.org/10.1002/jps.2600800517.

    Article  CAS  PubMed  Google Scholar 

  36. Li CP, Salvador AS, Ibrahim HR, Sugimoto Y, Aoki T. Phosphorylation of egg white proteins by dry-heating in the presence of phosphate. J Agric Food Chem. 2003;51:6808–15. https://doi.org/10.1021/jf030043+.

    Article  CAS  PubMed  Google Scholar 

  37. Zhou B, Zhang M, Fang Z, Liu Y. A combination of freeze drying and microwave vacuum drying of duck egg white protein powders. Drying Tech. 2014;32:1840–7. https://doi.org/10.1080/07373937.2014.952380.

    Article  CAS  Google Scholar 

  38. Telange DR, Bhagat SB, Patil AT, Umekar MJ, Pethe AM, Raut NA. Glucosamine HCl-based solid dispersions to enhance the biopharmaceutical properties of acyclovir. J Excipients and Food Chem. 2019;10(3):65–81.

    Google Scholar 

  39. Telange DR, Sohail NK, Hemke AT, Kharkar PS, Pethe AM. Phospholipids complex – loaded self-assembled phytosomal soft nanoparticles: evidence of enhanced solubility, dissolution rate, ex vivo permeability, oral bioavailability and antioxidant potential of mangiferin. Drug Deliv Transl Res. 2020:1–28. https://doi.org/10.1007/s13346-020-00822-4.

  40. Telange DR, Patil AT, Pethe AM, Tatode AA, Anand S, Dave VS. Kaempferol-phospholipid complex: formulation, and evaluation of improved solubility, in vivo bioavailability, and antioxidant potential of kaempferol. J Excipients and Food Chem. 2016;7(4):89–116.

    Google Scholar 

  41. Telange DR, Patil AT, Pethe AM, Fegade H, Anand S, Dave VS. Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential. Eur J Pharm Sci. 2017;108:36–49. https://doi.org/10.1016/j.ejps.2016.12.009.

    Article  CAS  PubMed  Google Scholar 

  42. Telange DR, Nirgulkar SB, Umekar MJ, Patil AT, Pethe AM, Bali NR. Enhanced transdermal permeation and anti-inflammatory potential of phospholipids complex-loaded matrix film of umbelliferone: Formulation development, physico-chemical and functional characterization. Eur J Pharm Sci. 2019;131:23–38. https://doi.org/10.1016/j.ejps.2019.02.006.

    Article  CAS  PubMed  Google Scholar 

  43. Dhore PW, Dave VS, Saoji SD, Bobde YS, Mack C, Raut NA. Enhancement of the aqueous solubility and permeability of a poorly water soluble drug ritonavir via lyophilized milk-based solid dispersions. Pharm Dev Technol. 2017;22(1):90–102. https://doi.org/10.1080/10837450.2016.1193193.

    Article  CAS  PubMed  Google Scholar 

  44. Anderson NH, Bauer M, Boussac N, Khan-Malek R, Munden P, Sardaro M. An evaluation of fit factors and dissolution efficiency for the comparison of in vitro dissolution profiles. J Pharm Biomed Anal. 1998;17:811–22. https://doi.org/10.1016/S0731-7085(98)00011-9.

    Article  CAS  PubMed  Google Scholar 

  45. Klein S. The use of biorelevant dissolution media to forecast the in vivo performance of a drug. AAPS J. 2010;12:397–406. https://doi.org/10.1208/s12248-010-9203-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dixit P, Jain DK, Dumbwani J. Standardization of an ex vivo method for determination of intestinal permeability of drugs using everted rat intestine apparatus. J Pharmacol Toxicol Methods. 2012;65:13–7. https://doi.org/10.1016/j.vascn.2011.11.001.

    Article  CAS  PubMed  Google Scholar 

  47. Hamilton KL, Butt AG. Glucose transport into everted sacs of the small intestine of mice. Adv Physiol Educ. 2013;37:415–26. https://doi.org/10.1152/advan.00017.2013.

    Article  PubMed  Google Scholar 

  48. Vaculikova E, Cernikova A, Placha D, et al. Preparation of hydrochlorothiazide nanoparticles for solubility enhancement. Molecules. 2016;21:2–8. https://doi.org/10.3390/molecules21081005.

    Article  CAS  Google Scholar 

  49. Telange DR, Denge R, Patil AT, Umekar MJ, Gupta SV, Dave VS. Pentaerythritol as an excipient/solid-dispersion carrier for improved solubility and permeability of ursodeoxycholic acid. J Excipients and Food Chem. 2018;9(3):80–95.

    Google Scholar 

  50. Ghareeb MM, Abdulrasool AA, Hussein AA, Noordin M. Kneading technique for preparation of binary solid dispersion of meloxicam with poloxamer 188. AAPS PharmSciTech. 2009;10:1206–15. https://doi.org/10.1208/s12249-009-9316-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huanbutta K, Limmatvapirat S, Sungthongjeen S, Sriamornsak P. Novel strategy to fabricate floating drug delivery system based on sublimation technique. AAPS PharmSciTech. 2015;17(3):693–9. https://doi.org/10.1208/s12249-015-0398-6.

    Article  CAS  PubMed  Google Scholar 

  52. Arafa MF. A S. El-Gizawy, et al. Sucralose as co-crystal co-former for hydrochlorothiazide: development of oral disintegrating tablets. Drug Dev Ind Pharm. 2015;42:1225–33. https://doi.org/10.3109/03639045.2015.1118495.

    Article  CAS  PubMed  Google Scholar 

  53. Sirisha PL, Babu GK, Babu PS. Conceptuation, formulation, and evaluation of sustained-release floating tablets of captopril compression coated with gastric dispersible hydrochlorothiazide using 23 factorial design. Int J Pharm Invest. 2014;4(2):77–87. https://doi.org/10.4103/2230-973X.133055.

    Article  CAS  Google Scholar 

  54. Thiyagarajan K, Bharti VK, Tyagi S, et al. Synthesis of non-toxic, biocompatible, and colloidal stable silver nanoparticle using egg-white protein as capping and reducing agents for sustainable antibacterial application. RSC Adv. 2018;8:23213–29. https://doi.org/10.1039/C8RA03649G.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mahobia S, Bajpai J, Bajpai AK. An in-vitro investigation of swelling controlled delivery of insulin from egg albumin nanocarriers. Iran J of Pharm Res. 2016;15(4):695–711.

    CAS  Google Scholar 

  56. Zhao Y, Chen Z, Li J, et al. Formation mechanism of ovalbumin gel induced by alkali. Food Hydrocoll. 2016;61:390–8. https://doi.org/10.1016/j.foodhyd.2016.04.041.

    Article  CAS  Google Scholar 

  57. Sanphui P, Devi VK, Clara D, et al. Cocrystals of hydrochlorothiazide: Solubility and diffusion/ permeability enhancements through drug-coformer interactions. Mol Pharm. 2015;12(5):1615–22. https://doi.org/10.1021/acs.molpharmaceut.5b00020.

    Article  CAS  PubMed  Google Scholar 

  58. Acartiirk F, Kqlal O, Celebi N. The effect of some natural polymers on the solubility and dissolution characteristics of nifedipine. Int J of Pharm. 1992; 85: l-6. https://doi.org/10.1016/0378-5173(92)90127-N.

  59. Patel M, Tekade A, Gattani S, Surana S. Solubility enhancement of lovastatin by modified locust bean gum using solid dispersion techniques. AAPS PharmSciTech. 2008;9:1262–9. https://doi.org/10.1208/s12249-008-9171-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shazly GA, Ibrahim MA, Badran MM, Zoheir KMA. Utilizing pluronic F-127 and gelucire 50/13 solid dispersions for enhanced skin delivery of flufenamic acid. Drug Dev Res. 2012;73(6):299–307. https://doi.org/10.1002/ddr.21013.

    Article  CAS  Google Scholar 

  61. Kratz F. Albumin as a drug carrier: Design of prodrugs, drug conjugates, and nanoparticles. J Control Release. 2008;132:171–83. https://doi.org/10.1016/j.jconrel.2008.05.010.

    Article  CAS  PubMed  Google Scholar 

  62. Imai T, Nodomi K, Shameem M, et al. Mutual effect of egg albumin and fatty acids on the bioavailability of dl-α-tocopherol. Int J Pharm. 1997;155:45–52. https://doi.org/10.1016/S0378-5173(97)00160-9.

    Article  CAS  Google Scholar 

  63. Hussain MD, Saxena V, Brausch JF, Talukder RM. Ibuprofen-phospholipids solid dispersion: improved dissolution and gastric tolerance. Int J Pharm. 2012;422:290–4. https://doi.org/10.1016/j.ijpharm.2011.11.011.

    Article  CAS  PubMed  Google Scholar 

  64. Costa P, Manuel J, Lobô S. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33. https://doi.org/10.1016/S0928-0987(01)00095-1.

    Article  CAS  PubMed  Google Scholar 

  65. Raman S, Polli JE. Prediction of positive food effect: Bioavailability enhancement of BCS class II drugs. Int J Pharm. 2016;506(1-2):110–5. https://doi.org/10.1016/S0928-0987(01)00095-1.

    Article  CAS  PubMed  Google Scholar 

  66. Fong SYK, Ibisogly A, Bauer-Brandl A. Solubility enhancement of BCS Class II drug by solid phospholipids dispersions: spray drying vs freeze-drying. Int J Pharm. 2015;496(2):382–91. https://doi.org/10.1016/S0928-0987(01)00095-1.

    Article  CAS  PubMed  Google Scholar 

  67. Almén MS, Nordström KJV, Fredriksson R, Schioth HB. Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol. 2009;7(50):1–14. https://doi.org/10.1186/1741-7007-7-50.

    Article  CAS  Google Scholar 

  68. Chen L, Remondetto GE, Subirade M. Food protein-based materials as nutraceutical delivery systems. Trends Food Sci Technol. 2006;17(5):272–83. https://doi.org/10.1016/j.tifs.2005.12.011.

    Article  CAS  Google Scholar 

  69. Davis JP, Foegeding EA. Foaming and interfacial properties of polymerized whey protein isolate. J Food Sci. 2004;69(5):404–10. https://doi.org/10.1111/j.1365-2621.2004.tb10706.x.

    Article  Google Scholar 

Download references

Acknowledgements

The corresponding author would like to thank Dr. Shirish P. Jain, Principal, Rajarshi Shahu College of Pharmacy, Buldhana, for the technical support to submit this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darshan R. Telange.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telange, D.R., Jain, S.P., Pethe, A.M. et al. Egg White Protein Carrier-Assisted Development of Solid Dispersion for Improved Aqueous Solubility and Permeability of Poorly Water Soluble Hydrochlorothiazide. AAPS PharmSciTech 22, 94 (2021). https://doi.org/10.1208/s12249-021-01967-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-01967-2

KEY WORDS

Navigation