Skip to main content

Advertisement

Log in

Development of Nanonized Nitrendipine and Its Transformation into Nanoparticulate Oral Fast Dissolving Drug Delivery System

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The present research focuses on the development of a nanoparticulate (nanocrystals-loaded) rapidly dissolving (orodispersible) tablet with improved solubility and bioavailability. The nanosuspension (NS) was prepared by antisolvent sonoprecipitation technique and the optimized NS was lyophilized to obtain nanocrystals (NCs), which were evaluated for various parameters. The nitrendipine (NIT) nanoparticulate orodispersible tablet (N-ODT) was prepared by direct compression method. The optimized N-ODT was evaluated for pre and post compression characteristics, in vivo pharmacokinetic and stability profile. The optimized NS showed a particle size of 505.74 ± 15.48 nm with a polydispersity index (PDI) of 0.083 ± 0.006. The % NIT content in the NCs was found to be 78.4 ± 2.3%. The saturation solubility of NIT was increased remarkably (26.14 times) in comparison to plain NIT, post NCs development. The DSC and p-XRD analysis of NCs revealed the perseverance of the integrity and crystallinity of NIT on lyophilization. The results of micromeritic studies revealed the good flow-ability and compressibility of NCs blend. All the post-compression properties of N-ODT were observed within the standard intended limit. The dispersion, wetting, and disintegration time of the optimized batch of N-ODT was found to be 39 ± 1.13 s, 44.66 ± 1.52 s, and 33.91 ± 0.94 s respectively. The in vitro dissolution study displayed 100.28 ± 2.64% and 100.61 ± 3.3% of NIT released from NCs (in 8 min) and N-ODT (in 6 min) respectively, while conventional NIT tablet took 30 min to release 99.94 ± 1.57% of NIT. The in vivo pharmacokinetic study in rabbits demonstrated significantly (p < 0.05) higher bioavailability of NIT on release from N-ODT than the conventional NIT tablet. Thus, N-ODT could be a promising tool for improving the solubility and bioavailability of NIT and to treat cardiovascular diseases effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Applicable

References

  1. Meera C, Anthony C, Clare H. The use of nanotechnology in cardiovascular disease. Applied Nanoscience. 2018;8:1607-1619. https://doi.org/10.1007/s13204-018-0856-z.

  2. Keck CM, Müller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenization. Eur J Pharm Biopharm. 2006;62:3–16. https://doi.org/10.1016/j.ejpb.2005.05.009.

    Article  CAS  PubMed  Google Scholar 

  3. Tripathi KD. Essentials of Medical. Pharmacology. 2003:494–6.

  4. Xia D, Quan P, Piao H, Sun S, Yin Y, Cui F. Preparation of stable nitrendipine nanosuspensions using the precipitation–ultrasonication method for enhancement of dissolution and oral bioavailability. Eur J Pharm Sci. 2010;40(4):325–34. https://doi.org/10.1016/j.ejps.2010.04.006.

    Article  CAS  PubMed  Google Scholar 

  5. Quan P, Xia D, Piao H, Shi K, Jia Y, Cui F. Nitrendipine nanocrystals: its preparation, characterization, and in vitro-in vivo evaluation. AAPS PharmSciTech. 2011;12(4):1136–43. https://doi.org/10.1208/s12249-011-9682-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Junyaprasert VB, Morakul B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian J Pharm Sci. 2015;10(1):13–23. https://doi.org/10.1016/j.ajps.2014.08.005.

    Article  Google Scholar 

  7. Chen H, Khemtong C, Yang X, Chang X, Gao J. Nanonization strategies for poorly water-soluble drugs. Drug Discov Today. 2010;16(7-8):354–60. https://doi.org/10.1016/j.drudis.2010.02.009.

    Article  CAS  PubMed  Google Scholar 

  8. Bajaj A, Rao M, Pardeshi A, Sali D. Nanocrystallization by evaporative antisolvent technique for solubility and bioavailability enhancement of telmisartan. AAPS PharmSciTech. 2012;13(4):1331–40. https://doi.org/10.1208/s12249-012-9860-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sinha B, Muller RH, Muschwitzer JP. Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size. Int J Pharm. 2013;453(1):126–41. https://doi.org/10.1016/j.ijpharm.2013.01.019.

    Article  CAS  PubMed  Google Scholar 

  10. Pardeike J, Strohmeier DM, Schrödl N, Voura C, Gruber M. Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. Int J Pharm. 2011;420(1):93–100. https://doi.org/10.1016/j.ijpharm.2011.08.033.

    Article  CAS  PubMed  Google Scholar 

  11. Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;3(9):785–96. https://doi.org/10.1038/nrd1494.

    Article  CAS  PubMed  Google Scholar 

  12. Fu Q, Guo M, He Z. Comparison of solid dispersion and nanosuspension for improvement of drug absorption. Asian J Pharm Sci. 2016;11:10–1. https://doi.org/10.1016/j.ajps.2015.10.009.

    Article  Google Scholar 

  13. Rao JP, Kurt EG. Polymer nanoparticles: preparation techniques and size-control parameters. Prog.Polym.Sci. 2011;36(7):887–913. https://doi.org/10.1016/j.progpolymsci.2011.01.001.

    Article  CAS  Google Scholar 

  14. Jermain SV, Brough C, Williams RO. Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery-An update. Int J Pharm. 2018;535:379–92. https://doi.org/10.1016/j.ijpharm.2017.10.051.

    Article  CAS  PubMed  Google Scholar 

  15. Junghanns JUA, Müller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine. 2008;3(3):295–309. https://doi.org/10.2147/ijn.s595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reddy LH, Ghosh B. Fast-dissolving-drug-delivery-systems: a review of the literature. Indian J Pharm Sci. 2002:31–336.

  17. Chaudhary H, Gauri S, Rathee P, Kumar V. Development and optimization of fast dissolving oro-dispersible films of granisetron HCl using Box–Behnken statistical design. Bull Fac Pharm Cairo Univ. 2013;51:193–201. https://doi.org/10.1016/j.bfopcu.2013.05.002.

    Article  Google Scholar 

  18. Karki S, Kim H, Jeong Na S, Shin D, Jo K, Lee J, et al. Thin films as an emerging platform for drug delivery. Asian J Pharm Sci. 2016;11:559–74.

    Article  Google Scholar 

  19. Siddiqui N, Garg G, Sharma PK. Fast dissolving tablets: preparation, characterization and evaluation: An overview. Int J Pharm Sci Rev Res. 2010;4:287–96.

    Google Scholar 

  20. Nautiyal U, Singh S, Singh R. Gopal, Kakar S. Fast dissolving tablets as a novel boon: A review. J Pharm Chem Biol Sci. 2014;2:25–6.

    Google Scholar 

  21. Kassem MAA, Elmeshad AN, Fares AR. Enhanced solubility and dissolution rate of lacidipine nanosuspension: formulation via antisolvent sonoprecipitation technique and optimization using box–behnken design. AAPS PharmSciTech. 2016;18(4):983–96. https://doi.org/10.1208/s12249-0160604-1.

    Article  PubMed  Google Scholar 

  22. Müller RH, Jacobs C. Buparvaquone mucoadhesive nanosuspension: preparation, optimization and long-term stability. Int J Pharm. 2002;237:151–61. https://doi.org/10.1016/s0378-5173(02)00040-6.

    Article  PubMed  Google Scholar 

  23. Tran TT, Tran KA, Tran PH. Modulation of particle size and molecular interactions by sonoprecipitation method for enhancing dissolution rate of poorly water-soluble drug. Ultrason-Sonochem. 2015;24:256–63. https://doi.org/10.1016/j.ultsonch.2014.11.020.

    Article  CAS  PubMed  Google Scholar 

  24. Mishra B, Sahoo J, Dixit PK. Fabrication of cinnarizine nanosuspensions by ultrasonication technique: a systematic study of formulation parameters on particle size and in-vitro dissolution. Biopharm J. 2015;1(1):12–21. https://doi.org/10.22159/ijap.2018v10i2.23075.

    Article  CAS  Google Scholar 

  25. Skoaufa MAA. Preparation and characterization of ketoprofen nanosuspension for solubility and dissolution velocity enhancement. Int J Pharm Bio Sci. 2013;4(1):768–80.

    Google Scholar 

  26. Afifi SA, Hassan MA, Abdelhameed AS, Elkhodairy KA. Nanosuspension: an emerging trend for bioavailability enhancement of etodolac. Int J Polymer Sci. 2015;2015:1–16. https://doi.org/10.1155/2015/938594.

    Article  CAS  Google Scholar 

  27. Patel J, Dhingani A, Garala K, Raval M, Sheth N. Design and development of solid nanoparticulate dosage forms of telmisartan for bioavailability enhancement by integration of experimental design and principal component analysis. Powder Technol. 2014;258:331–43. https://doi.org/10.1016/j.powtec.2014.03.001.

    Article  CAS  Google Scholar 

  28. Kulkarni AS, Ghadge DM, Kokate PB. Formulation and in vitro evaluation of orally disintegrating tablets of olanzapine-2-hydroxypropyl-β-cyclodextrin inclusion complex. Iran J Pharm Res. 2010;9(4):335–47.

    Google Scholar 

  29. Chowdary YA, Soumya M, Madhu BM, Aparna K, Himabindu P. A review on fast dissolving drug delivery systems-a pioneering drug delivery technology. Bull Env Pharmacol Life Sci. 2012;1(12):8–20.

    Google Scholar 

  30. Puttewar TY. Formulation and evaluation of orodispersible tablet of taste masked doxylamine succinate using ion exchange resin. J King Saud Uni. 2010;22:229–40. https://doi.org/10.1016/j.jksus.2010.05.003.

    Article  Google Scholar 

  31. Sandeep N, Gupta MM. Immediate drug release dosage form: a review. J Drug Deliv and Thera. 2013;3(2):155-161. https://doi.org/10.22270/jddt.v3i2.457.

  32. Elbary AA, Ali AA, Aboud HM. Enhanced dissolution of meloxicam from orodispersible tablets prepared by different methods. Bull Fac Pharmac. 2012;50(2):89–97. https://doi.org/10.1016/j.bfopcu.2012.07.001.

    Article  CAS  Google Scholar 

  33. Prusty A. Formulation and in-vitro evaluation of amlodipine besylate-hp-b-cd inclusion complex incorporated mouth dissolving tablets. Bull Pharm Res2014. 2014;4(3):124–8.

    CAS  Google Scholar 

  34. Winarti L, Ameliana L, Nurahmanto D. Formula optimization of orally disintegrating tablet containing meloxicam nanoparticles. Indonesian J. Pharm. 2017; 28(1): 53 – 64. https://doi.org/10.14499/indonesianjpharm28iss1pp53.

  35. Patel NK, Jethara SI, Patel MS. A review on orodispersible tablets-As a novel formulation for oral drug delivery systems. J Pharm Sci Biosci Res. 2015;5(3):286–94.

    Google Scholar 

  36. Rewar S, Singh CJ, Bansal BK, Pareek R, Sharma AK. Oral dispersible tablets: an overview; development, technologies and evaluation. Int J Res Dev in Pharmacy and Life Sci. 2014;3(6):1223–35.

    Google Scholar 

  37. Singh S, Mandal S, Verma N. Formulation and evaluation of orodispersible tablets of ofloxacin by using different natural super disintegrating agents. Int. J. Pharma. Sci. Res. 2020; 11(2): 884-895. https://doi.org/10.13040/IJPSR.0975-8232.11(2).884-95.

  38. Jassim ZE, Hussein AA. Formulation and evaluation of clopidogrel tablet incorporating drug nanoparticles. Int J Pharm Pharm Sci. 2014;6(1):838–51.

    Google Scholar 

  39. Hao J, Gao Y, Zhao J, Zhang J, Li Q, Liu J. Preparation and optimization of resveratrol nanosuspensions by antisolvent precipitation using Box-Behnken design. AAPS PharmSciTech. 2015;16(1):118–28. https://doi.org/10.1208/s12249-014-0211-y.

    Article  CAS  PubMed  Google Scholar 

  40. Vijayanand P, Patil JS, Reddy MV. Formulation and comparative pharmacokinetic evaluation of orodispersible tablets and films of nebivolol hydrochloride. J. Pharmceu. Inves. 2015;45:237-247. https://doi.org/10.1007/s40005-014-0169-5.

  41. El-setouhy DA, El-malak NSA. Formulation of a novel tianeptine sodium orodispersible film. AAPS PharmSciTech. 2010;11(3):1018–25. https://doi.org/10.1208/s12249-010-9464-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chatwal GR, Anand SK. Instrumental methods of chemical analysis. Himalaya Publishing House, New Delhi. 2.60-2.71.

  43. Chauhan A. Chauhan P. Powder XRD technique and its applications in science and technology. J Anal Bioanal Tech 2014;5(6).

  44. Desai PM, Liew CV, Heng PWS. Review of disintegrants and the disintegration phenomena. J Pharm Sci. 2016;105(9):2545–55. https://doi.org/10.1016/j.xphs.2015.12.019.

    Article  CAS  PubMed  Google Scholar 

  45. Papadimitriou S, Bikiaris D. Novel self-assembled core–shell nanoparticles based on crystalline amorphous moieties of aliphatic copolyesters for efficient controlled drug release. J Control Release. 2009;138:177–84. https://doi.org/10.1016/j.jconrel.2009.05.013.

    Article  CAS  PubMed  Google Scholar 

  46. Bhowmik D, Chiranjib B, Chandira RM. Fast dissolving tablet: an overview. J Chem Pharm Res. 2009;1(1):163–77.

    CAS  Google Scholar 

  47. Singh J, Garg R, Gupta G. Enhancement of solubility of lamotrigine by solid dispersion and development of orally disintegrating tablets using 32 full factorial design. Aust J Pharm. 2015;2015:1–8.

    CAS  Google Scholar 

  48. Tanuwijaya J. Karsono, Harahap U. Characterization of piroxicam nanoparticles in orally disintegrating tablet (ODT). Int. J. Chem Tech. Res. 2014;6(2):955–61.

    Google Scholar 

  49. Giri TK, Sa B. Preparation and evaluation of rapidly disintegrating fast release tablet of inclusion complex. Sci Res Pharmacol Pharm. 2010;01:18–26. https://doi.org/10.4236/pp.2010.11003.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Government College of Pharmacy, Aurangabad (M.S.), India, Wockhardt Ltd., Aurangabad (M.S.), India and M.E.S.’s College of Pharmacy, Ahmednagar (M.S.), India, for the resource support provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Vishal Gandhi.

Ethics declarations

Ethics Approval and Consent to Participate

Applicable (IAEC Approval No. - MES/COP/IAEC/04/2017-18)

Consent for Publication

Not applicable

Competing Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandhi, N.V., Deokate, U.A. & Angadi, S.S. Development of Nanonized Nitrendipine and Its Transformation into Nanoparticulate Oral Fast Dissolving Drug Delivery System. AAPS PharmSciTech 22, 113 (2021). https://doi.org/10.1208/s12249-021-01963-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-01963-6

KEY WORDS

Navigation