Skip to main content

Advertisement

Log in

Preparation and Evaluation of Co-amorphous Formulations of Telmisartan—Amino Acids as a Potential Method for Solubility and Dissolution Enhancement

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Telmisartan (TLM) is a potent antihypertensive drug with pH-dependent aqueous solubility. This work aimed to enhance the solubility and dissolution rate of TLM by the co-amorphous drug amino acid (AA) approach by combining TLM, with different types and ratios of AAs. The co-amorphous TLM-AA blends were prepared by freeze-drying and investigated for solid-state characteristics like the dissolution rate enhancement of TLM. Among the prepared co-amorphous formulations, TLM-arginine (ARG) exhibited the greatest enhancement in solubility with increasing the molar ratio of ARG. The TLM-ARG at 1:2 ratio showed about a 57-fold increase in solubility of TLM and the highest dissolution percentage in phosphate buffer (pH7.5) (100% in 20 minutes) compared to both crystalline TLM (20% in 60 min) and physical mixture. Powder XRD, DSC, FTIR analysis and SEM demonstrated the formation of amorphous form within the co-amorphous formulations. Only TLM:ARG (1:0.5) were stable at (40°C, 75% RH) for a minimum of 90 days. In conclusion, ARG was able to stabilize the amorphous form of TLM and enhances its aqueous solubility and dissolution. The 1:2 w/w ratio of TLM-ARG co-amorphous showed the best solubility and dissolution rate while the 1:0.5 w/w ratio showed the best stability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wienen W, Entzeroth M, Meel JC, Stangier J, Busch U, Ebner T, et al. A review on telmisartan: a novel, long-acting angiotensin II-receptor antagonist. Cardiovasc Ther. 2000;18(2):127–54.

    CAS  Google Scholar 

  2. Wienen W, Entzeroth M, van Meel JCA, Stangier J, Busch U, Ebner T, et al. A review on telmisartan: a novel, long-acting angiotensin II-receptor antagonist. Cardiovascular Drug Reviews 2000;18(2):127-154.

  3. Arora P, Kaur A, Haneef J, Chadha R. solubility improvement of telmisartan by cocrystallization with citric acid. Int J Pharm Sci Res. 2017;8(9):3768–75.

    CAS  Google Scholar 

  4. Chadha R, Bhandari S, Haneef J, Khullar S, Mandal S. Cocrystals of telmisartan: characterization, structure elucidation, in vivo and toxicity studies. CrystEngComm. 2014;16(36):8375–89.

    Article  CAS  Google Scholar 

  5. Haneef J, Chadha R. Drug-drug multicomponent solid forms: cocrystal, coamorphous and eutectic of three poorly soluble antihypertensive drugs using mechanochemical approach. AAPS PharmSciTech. 2017:1–12.

  6. Alatas F, Ratih H, Soewandhi SN. Enhancement of solubility and dissolution rate of telmisartan by telmisartan-oxalic acid cocrystal formation. Int J Pharm Pharm Sci. 2015;7:423–6.

    CAS  Google Scholar 

  7. Reddy VV, Aswini M, Harini P, Prathyusha B, Sreevani MS. Design and characterization of microcrystals for enhanced dissolution rate of telmisartan. International Journal of Innovative Pharmaceutical Research. 2013;4(1):263–8.

    Google Scholar 

  8. Choi J-S. Enhanced stability and solubility of pH-dependent drug, telmisartan achieved by solid dispersion. Journal of Drug Delivery Science and Technology. 2017;37:194–203.

    Article  CAS  Google Scholar 

  9. Tran PHL, Tran HTT, Lee B-J. Modulation of microenvironmental pH and crystallinity of ionizable telmisartan using alkalizers in solid dispersions for controlled release. J Control Release. 2008;129(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  10. Dukeck R, Sieger P, Karmwar P. Investigation and correlation of physical stability, dissolution behaviour and interaction parameter of amorphous solid dispersions of telmisartan: a drug development perspective. Eur J Pharm Sci. 2013;49(4):723–31.

    Article  CAS  PubMed  Google Scholar 

  11. Phulzalke S, Kate B, Bagade M. Solubility enhancement of telmisartan using mixed hydrotropy approach. Asian Journal of Biomedical and Pharmaceutical Sciences. 2015;5(50):38–40.

    CAS  Google Scholar 

  12. Jaiswal P, Aggarwal G, Harikumar SL, Singh K. Development of self-microemulsifying drug delivery system and solid-self-microemulsifying drug delivery system of telmisartan. International journal of pharmaceutical investigation. 2014;4(4):195–206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ahmad J, Kohli K, Mir SR, Amin S. Formulation of self-nanoemulsifying drug delivery system for telmisartan with improved dissolution and oral bioavailability. J Dispers Sci Technol. 2011;32(7):958–68.

    Article  CAS  Google Scholar 

  14. Swamy N, Shiny E. Formulation and evaluation of telmisartan liquisolid tablets. Rajiv Gandhi University of Health Sciences Journal of Pharmaceutical Sciences. 2013;3(3):49–57.

    Google Scholar 

  15. Chella N, Narra N, Rama RT. Preparation and characterization of liquisolid compacts for improved dissolution of telmisartan. J Drug Deliv. 2014;2014:1–10.

    Article  Google Scholar 

  16. Zhang Y, Jiang T, Zhang Q, Wang S. Inclusion of telmisartan in mesocellular foam nanoparticles: drug loading and release property. Eur J Pharm Biopharm. 2010;76(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  17. Sharma C, Desai MA, Patel SR. Ultrasound-assisted anti-solvent crystallization of telmisartan using dimethyl sulfoxide as organic solvent. Cryst Res Technol. 2018;53(3):1–9.

    Article  CAS  Google Scholar 

  18. Lepek P, Sawicki W, Wlodarski K, Wojnarowska Z, Paluch M, Guzik L. Effect of amorphization method on telmisartan solubility and the tableting process. Eur J Pharm Biopharm. 2013;83(1):114–21.

    Article  CAS  PubMed  Google Scholar 

  19. Sangwai M, Vavia P. Amorphous ternary cyclodextrin nanocomposites of telmisartan for oral drug delivery: improved solubility and reduced pharmacokinetic variability. Int J Pharm. 2013;453(2):423–32.

    Article  CAS  PubMed  Google Scholar 

  20. Rao M, Bajaj A, Khole I, Munjapara G, Trotta F. In vitro and in vivo evaluation of β-cyclodextrin-based nanosponges of telmisartan. J Incl Phenom Macrocycl Chem. 2013;77(1-4):135–45.

    Article  CAS  Google Scholar 

  21. Borba PAA, Pinotti M, Andrade GRS, da Costa Jr NB, Junior LRO, Fernandes D, et al. The effect of mechanical grinding on the formation, crystalline changes and dissolution behaviour of the inclusion complex of telmisartan and β-cyclodextrins. Carbohydr Polym. 2015;133:373–83.

    Article  CAS  PubMed  Google Scholar 

  22. Isaac J, Ganguly S, Ghosh A. Co-milling of telmisartan with poly (vinyl alcohol)–an alkalinizer free green approach to ensure its bioavailability. Eur J Pharm Biopharm. 2016;101:43–52.

    Article  CAS  PubMed  Google Scholar 

  23. Ali AMA, Ali AA, Maghrabi IA. Clozapine-carboxylic acid plasticized co-amorphous dispersions: preparation, characterization and solution stability evaluation. Acta Pharma. 2015;65(2):133–46.

    Article  CAS  Google Scholar 

  24. Thakuria R, Sarma B. Drug-drug and drug-nutraceutical cocrystal/salt as alternative medicine for combination therapy: a crystal engineering Approach. Crystals. 2018;8(2):101–40.

    Article  CAS  Google Scholar 

  25. Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev. 2007;59(7):617–30.

    Article  CAS  PubMed  Google Scholar 

  26. Yadav A, Shete A, Dabke A, Kulkarni P, Sakhare S. Co-crystals: a novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J Pharm Sci. 2009;71(4):359–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Al-Remawi M, Ali AMA, Khames A, Hamaidi M. Meloxicam-paracetamol binary solid dispersion systems with enhanced solubility and dissolution rate: preparation, characterization, and in vivo evaluation. J Pharm Innov. 2017;12(3):206–15.

    Article  Google Scholar 

  28. Mesallati H, Conroy D, Hudson S, Tajber L. Preparation and characterization of amorphous ciprofloxacin-amino acid salts. Eur J Pharm Biopharm. 2017;121:73–89.

    Article  CAS  PubMed  Google Scholar 

  29. Liu M, Hong C, Yao Y, Shen H, Ji G, Li G, et al. Development of a pharmaceutical cocrystal with solution crystallization technology: preparation, characterization, and evaluation of myricetin-proline cocrystals. Eur J Pharm Biopharm. 2016;107:151–9.

    Article  CAS  PubMed  Google Scholar 

  30. Pradhan S, Hedberg J, Blomberg E, Wold S, Odnevall Wallinder I. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles. J Nanopart Res. 2016;18(9):285-.

  31. Elshanawane AA, Abdelaziz LM, Kamal MM, Hafez HM. Quantitative determination of telmisartan, ramipril, amlodipine besylate, and atorvastatin calcium by HPLC. J Liq Chromatogr Relat Technol. 2014;37(2):195–206.

    Article  CAS  Google Scholar 

  32. Real D, Orzan L, Leonardi D, Salomon CJ. Improving the dissolution of triclabendazole from stable crystalline solid dispersions formulated for oral delivery. AAPS PharmSciTech. 2019;21(1):16.

    Article  PubMed  CAS  Google Scholar 

  33. Rambo MKD, Ferreira MMC. Determination of cellulose crystallinity of banana residues using near infrared spectroscopy and multivariate analysis. J Braz Chem Soc. 2015;26:1491–9.

    CAS  Google Scholar 

  34. Torrado G, Fraile S, Torrado S, Torrado S. Process-induced crystallite size and dissolution changes elucidated by a variety of analytical methods. Int J Pharm. 1998;166(1):55–63.

    Article  CAS  Google Scholar 

  35. Diaz DA, Colgan ST, Langer CS, Bandi NT, Likar MD, Van Alstine L. Dissolution similarity requirements: how similar or dissimilar are the global regulatory expectations? AAPS J. 2016;18(1):15–22.

    Article  PubMed  Google Scholar 

  36. Sterren VB, Aiassa V, Garnero C, Linck YG, Chattah AK, Monti GA, et al. Preparation of chloramphenicol/amino acid combinations exhibiting enhanced dissolution rates and reduced drug-induced oxidative stress. AAPS PharmSciTech. 2017;18(8):2910–8.

    Article  CAS  PubMed  Google Scholar 

  37. Khanfar M, Al-Taani B, Alsmadi M, Zayed A. Enhancement of the dissolution and bioavailability from freeze-dried powder of a hypocholesterolemic drug in the presence of Soluplus. Powder Technol. 2018;329:25–32.

    Article  CAS  Google Scholar 

  38. Amend J, Helgeson H. Solubilities of the common L-α-amino acids as a function of temperature and solution pH. Pure Appl Chem. 1997;69(5):935–42.

    Article  CAS  Google Scholar 

  39. Liu W, Guo Y, Chen J, Yu X. Measurement and correlation of the solubility of telmisartan (form A) in nine different solvents from 277.85 to 338.35 K. J Solut Chem. 2016;45(6):932–46.

    Article  CAS  Google Scholar 

  40. Censi R, Di Martino P. Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules. 2015;20(10):18759–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang Y, Zhang Q, Wang J-R, Lin K-L, Mei X. Amino acids as co-amorphous excipients for tackling the poor aqueous solubility of valsartan. Pharm Dev Technol. 2017;22(1):69–76.

    Article  CAS  PubMed  Google Scholar 

  42. Rangsimawong W, Wattanasri P, Tonglairoum P, Akkaramongkolporn P, Rojanarata T, Ngawhirunpat T, et al. Development of microemulsions and microemulgels for enhancing transdermal delivery of Kaempferia parviflora extract. AAPS PharmSciTech. 2018;19(5):2058–67.

    Article  CAS  PubMed  Google Scholar 

  43. Childs SL, Chyall LJ, Dunlap JT, Smolenskaya VN, Stahly BC, Stahly GP. Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids. Molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids. J Am Chem Soc. 2004;126(41):13335–42.

    Article  CAS  PubMed  Google Scholar 

  44. Affandi RMM, Meor M, Tripathy M, Majeed ABA. Arginine complexes with simvastatin: apparent solubility, in vitro dissolution and solid state characterization. Curr Drug Deliv. 2018;15(1):77–86.

    PubMed  Google Scholar 

  45. Marasini N, Tran TH, Poudel BK, Cho HJ, Choi YK, Chi S-C, et al. Fabrication and evaluation of pH-modulated solid dispersion for telmisartan by spray-drying technique. Int J Pharm. 2013;441(1-2):424–32.

    Article  CAS  PubMed  Google Scholar 

  46. Tilborg A, Springuel G, Norberg B, Wouters J, Leyssens T. On the influence of using a zwitterionic coformer for cocrystallization: structural focus on naproxen–proline cocrystals. CrystEngComm. 2013;15(17):3341–50.

    Article  CAS  Google Scholar 

  47. He H, Huang Y, Zhang Q, Wang J-R, Mei X. Zwitterionic cocrystals of flavonoids and proline: solid-state characterization, pharmaceutical properties, and pharmacokinetic performance. Cryst Growth Des. 2016;16(4):2348–56.

    Article  CAS  Google Scholar 

  48. Qi X, Zhang J, Wang W, Cao D. Solubility and stability of indomethacin in arginine-assisted solubilization system. Pharm Dev Technol. 2013;18(4):852–5.

    Article  CAS  PubMed  Google Scholar 

  49. Jensen KT, Löbmann K, Rades T, Grohganz H. Improving co-amorphous drug formulations by the addition of the highly water soluble amino acid, proline. Pharmaceutics. 2014;6(3):416–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Real D, Hoffmann S, Leonardi D, Salomon C, Goycoolea F. Chitosan-based nanodelivery systems applied to the development of novel triclabendazole formulations. PLoS One. 2018;13:e0207625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shimpi MR, Childs SL, Boström D, Velaga SP. New cocrystals of ezetimibe with L-proline and imidazole. CrystEngComm. 2014;16(38):8984–93.

    Article  CAS  Google Scholar 

  52. Newman A, Reutzel-Edens SM, Zografi G. Coamorphous active pharmaceutical ingredient–small molecule mixtures: considerations in the choice of coformers for enhancing dissolution and oral bioavailability. J Pharm Sci. 2018;107(1):5–17.

    Article  CAS  PubMed  Google Scholar 

  53. Tang L, Khan SU, Muhammad NA. Evaluation and selection of bio-relevant dissolution media for a poorly water-soluble new chemical entity. Pharm Dev Technol. 2001;6(4):531–40.

    Article  CAS  PubMed  Google Scholar 

  54. Patel H, Patel H, Gohel M, Tiwari S. Dissolution rate improvement of telmisartan through modified MCC pellets using 3 2 full factorial design. Saudi Pharmaceutical Journal. 2016;24(5):579–87.

    Article  PubMed  Google Scholar 

  55. Affandi M, Tripathy M, Majeed ABA. Arginine complexes with simvastatin: apparent solubility, in vitro dissolution and solid state characterization. Curr Drug Deliv. 2018;15(1):77–86.

    PubMed  Google Scholar 

  56. Bakheit AH, Abd-Elgalil AA, Mustafa B, Haque A, Wani TA. Telmisartan. Profiles of drug substances, excipients and related methodology. 40: Elsevier; 2015. p. 371-429.

  57. Zou X, Sha A, Ding B, Tan Y, Huang X. Evaluation and analysis of variance of storage stability of asphalt binder modified by nanotitanium dioxide. Adv Mater Sci Eng. 2017;2017:6319697.

    Article  CAS  Google Scholar 

  58. Guidence for industry: dissolution testing of immediate release solid oral dosage forms. The US Food and Drug Administration Guidance. 1997;(SUPAC–IR), Rockville, MD.

Download references

Funding

The authors acknowledge the financial support, grant number (101/ 2018) provided by Jordan University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mai Khanfar.

Ethics declarations

Competing Interest

The authors declare no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanfar, M., Al-Remawi, M., Al-Akayleh, F. et al. Preparation and Evaluation of Co-amorphous Formulations of Telmisartan—Amino Acids as a Potential Method for Solubility and Dissolution Enhancement. AAPS PharmSciTech 22, 112 (2021). https://doi.org/10.1208/s12249-021-01952-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-01952-9

KEY WORDS

Navigation