Skip to main content

Advertisement

Log in

Levobupivacaine-Loaded Liposome Associated with Thermogel for Prolonged Analgesia

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Pain is a phenomenon present in the majority of the population, affecting, among others, the elderly, overweight people, and especially recently operated patients, analgesia being necessary. In the specific case of relief of postoperative pain, different kinds of anesthetics are being used, among them bupivacaine, a widely used drug which promotes long-lasting analgesic effects. However, cardiotoxicity and neurotoxicity are related to its repetitive use. To overcome these shortcomings, Novabupi® (a racemic mixture) was developed and is marketed as an injectable solution. This formulation contains an enantiomeric excess of the levogyre isomer, which has reduced toxicity effects. Seeking to rationalize its use by extending the duration of effect and reducing the number of applications, the objectives of this work were to develop and evaluate liposomes containing Novabupi (LBPV), followed by incorporation into thermogel. Liposomes were prepared using the lipid hydration method, followed by size reduction using sonication, and the developed formulations were characterized by hydrodynamic diameter, polydispersity index (PDI), surface zeta potential, and encapsulation efficiency. The selected optimal liposomal formulation was successfully incorporated into a thermogel without loss of thermoresponsive properties, being suitable for administration as a subcutaneous injection. In the ex vivo permeation studies with fresh rodent skin, the thermogel with liposomes loaded with 0.5% LBPV (T-gel formulation 3) showed higher permeation rates compared to the starting formulation, thermogel with 0.5% LBPV (T-Gel 1), which will probably translate into better therapeutic benefits for treatment of postoperative analgesia, especially with regard to the number of doses applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fritz JM, Brennan GP, Hunter SJ, Magel JS. Initial management decisions after a new consultation for low back pain: implications of the usage of physical therapy for subsequent health care costs and utilization. ArchPhysMedRehabil. 2013;94:808–16. https://doi.org/10.1016/j.apmr.2013.01.008.

    Article  Google Scholar 

  2. Queiroz TP, Santos PL, Esteves JC, Stellin GM, Shimuzi AS, Betoni Junior W, et al. Dipirona versus paracetamol no controle da dor pós-operatória. Rev Odontol da UNESP. 2013;42(2):78–82. https://doi.org/10.1590/S1807-25772013000200002.

  3. Chou R, Deyo R, Friedly J, Skelly A, Hashimoto R, Weimer M, et al. Nonpharmacologic therapies for low back pain: a systematic review for an American College of Physicians clinical practice guideline. Ann Intern Med. 2013;166(7):493–505. https://doi.org/10.7326/M16-2459.

  4. Brunton LL, Knollmann, Björn C. As Bases Farmacológicas da Terapêutica de Goodman e Gilman. 13ed. Artmed Editora. 2018:497–515.

  5. Tsuchiya M, Mizutani K, Ueda W. Adding dextran to local anesthetic enhances analgesia. J Anesth. 2019;33(1):163–3. https://doi.org/10.1007/s00540-018-2574-9.

  6. Hamilton TW, Athanassoglou V, Mellon S, Strickland LH, Trivella M, Murray D, et al. Liposomal bupivacaine infiltration at the surgical site for the management of postoperative pain. Cochrane Database Syst Rev. 2017;2. https://doi.org/10.1002/14651858.CD011419.pub2.

  7. Athar M, Ahmed SM, Ali S, Siddiqi OA. Levobupivacaine: A safer alternative. J Curr Res Sci Med. 2016. https://doi.org/10.4103/2455-3069.184114.

  8. Sanford M, Keating G. Levobupivacaine. Drugs. 2010;70:761–91. https://doi.org/10.2165/11203250-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  9. Simonetti MP, Valinetti EA, Ferreira FM. Avaliaçäo da atividade anestésica local da S (-) Bupivacaína: estudo experimental in vivo no nervo ciático de rato. Rev Bras Anestesiol. 1997;47(5):425–34.

    CAS  Google Scholar 

  10. Lima EN, Andrade AR, Leal LB, de Santana DP. Levobupivacaine thermogel for long-acting analgesia. AAPS PharmSciTech. 2018;19(6):2533–42. https://doi.org/10.1208/s12249-018-1083-3.

    Article  CAS  PubMed  Google Scholar 

  11. Panahi Y, Farshbaf M, Mohammadhosseini M, Mirahadi M, Khalilov R, Saghfi S, et al. Recent advances on liposomal nanoparticles: synthesis, characterization and biomedical applications. Artif Cells Nanomed Biotechnol. 2017;45(4):788–99. https://doi.org/10.1080/21691401.2017.1282496.

  12. Batista CM, Carvalho, CMB& Magalhães. NSS. lipossomas e suas aplicações terapêuticas: estado da arte. Rev Bras Cienc Farm 2007. 2007;43(2):167–79. https://doi.org/10.1590/S1516-93322007000200003.

    Article  CAS  Google Scholar 

  13. Bulbake U, Doppalapudi S, Kommineni, N & Khan W. liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017; 9(2): 12. Doi: https://doi.org/10.3390/pharmaceutics9020012.

  14. BRASIL. AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA. Resolução de Diretoria Colegiada (RDC) 166, de 24 de julho de 2017. Dispõe sobre a validação de métodos analíticos e dá outras providências. ANVISA Brazil. 2017. RDC/ANVISA/ MS N° 166.

  15. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13(1):238–IN27. https://doi.org/10.1016/S0022-2836(65)80093-6.

    Article  CAS  PubMed  Google Scholar 

  16. Lasic D. Liposomes: From physics to applications. Elsevier. 1993.

  17. Ferraz-Carvalho RS, Pereira MA, Linhares LA, Lira-Nogueira MC, Cavalcanti IM, Santos-Magalhães NS, et al. Effects of the encapsulation of usnic acid into liposomes and interactions with antituberculous agents against multidrug-resistant tuberculosis clinical isolates. Mem Inst Oswaldo Cruz. 2016;111(5):330–4. https://doi.org/10.1590/0074-02760150454.

  18. Cheng YJ, Liang JX, Li QG. Construction of RNA-containing virus-like nanoparticles expression vector with cysteine residues on surface and fluorescent decoration. Chin J Genet. 2005;32:874–8.

    CAS  Google Scholar 

  19. Schmolka IR. Artificial skin I. Preparation and properties of pluronic F-127 gels for treatment of burns. J Biomed Mater Res. 1972;6(6):571–82. https://doi.org/10.1002/jbm.820060609.

    Article  CAS  PubMed  Google Scholar 

  20. Ur-Rehman T, Tavelin S, Gröbner G. Chitosan in situ gelation for improved drug loading and retention in poloxamer 407 gels. Int J Pharm. 409(1-2):19–29. https://doi.org/10.1016/j.ijpharm.2011.02.017.

  21. Kawano T, Oshita S, Takahashi A, Tsutsumi Y, Tomiyama Y, Kitahata H, et al. Molecular mechanisms of the inhibitory effects of bupivacaine, levobupivacaine, and ropivacaine on sarcolemmal adenosine triphosphate–sensitive potassium channels in the cardiovascular system. Anesthesiology. 2004;101(2):390–8. https://doi.org/10.1097/00000542-200408000-00020.

    Article  CAS  PubMed  Google Scholar 

  22. Seol D, Magnetta MJ, Ramakrishnan PS, Kurriger GL, Choe H, Jang K, et al. Biocompatibility and preclinical feasibility tests of a temperature-sensitive hydrogel for the purpose of surgical wound pain control and cartilage repair. J Biomed Mater Res B Appl Biomater. 2013. https://doi.org/10.1002/jbmb.32981.

  23. ICCVAM. Current Validation Status of In Vitro Test Methods Proposed for Identifying Eye Injury Hazard Potential of Chemicals and Products. NIH Publication 10-7553. National Institute of Environmental Health Sciences: Research Triangle Park, NC; 2010.

    Google Scholar 

  24. Wannaphatchaiyong S, Heng PWS, Suksaeree J, Boonme P, Pichayakorn W. Lidocaine loaded gelatin/gelatinized tapioca starch films for buccal delivery and the irritancy evaluation using chick chorioallantoic membrane. Saudi Pharm J. 2019;27(8):1085–95. https://doi.org/10.1016/j.jsps.2019.09.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oliveira AGLD, Silva RS, Alves EN, Presgrave RDF, Presgrave OAF, Delgado IF. Chorioallantoic membrane assays (HET-CAM and CAM-TBS): alternative tests for performing toxicological evaluation of products with low potential for ocular irritation. RevInst Adolfo Lutz. 2012;71(1):153–9.

    Google Scholar 

  26. Lagarto A, Vega R, Guerra I, González R. In vitro quantitative determination of ophthalmic irritancy by the chorioallantoic membrane test with trypan blue staining as alternative to eye irritation test. In Vitro Toxicol. 2006;20(5):699–702. https://doi.org/10.1016/j.tiv.2005.10.003.

    Article  CAS  Google Scholar 

  27. Hagino S, Itagaki H, Kato S, Kobayashi T. Further evaluation of the quantitative chorioallantoic membrane test using trypan blue stain to predict the eye irritancy of chemicals. In Vitro Toxicol. 1993;7(1):35–9. https://doi.org/10.1016/0887-2333(93)90110-Q.

    Article  CAS  Google Scholar 

  28. OECD. Guidelines for the Testing of Chemicals. Test No. 437: Bovine Corneal Opacity and Permeability Test Method for Identifying Ocular Corrosives and Severe Irritants. Section 4: Health Effects. 2009.

  29. Wilson SL, Ahearne M, Hopkinson A. An overview of current techniques for ocular toxicity testing. Toxicol. 2015;327:32–46. https://doi.org/10.1016/j.tox.2014.11.003.

    Article  CAS  Google Scholar 

  30. Novabupi. [Bull]. São Paulo: CRISTALIA; 2013.

  31. Verma DD. Verma S, Blume G &Fahr A. Particle size of liposomes influences dermal delivery of substances into skin. Int J Pharm. 2003;258(1-2):141–51. https://doi.org/10.1016/S0378-5173(03)00183-2.

    Article  CAS  PubMed  Google Scholar 

  32. Foldvari M, Gesztes A, Mezei M, Cardinal L, Kowalczyk I. &Behl M. Topical liposomal local anesthetics: design, optimization and evaluation of formulations. Drug Dev Ind Pharm. 1993;19(19):2499–517. https://doi.org/10.3109/03639049309047198.

    Article  CAS  Google Scholar 

  33. Mura P, Maestrelli F, González-Rodríguez ML, Michelacci I, Ghelardini C, Rabasco AM. Development, characterization and in vivo evaluation of benzocaine-loaded liposomes. Eur J PharmBiopharm. 2007;67(1):86–95. https://doi.org/10.1016/j.ejpb.2007.01.020.

    Article  CAS  Google Scholar 

  34. Silva CMGD, Fraceto LF, Franz-Montan M, Couto VM, Casadei BR, Cereda CMS, et al. Development of egg PC/cholesterol/α-tocopherol liposomes with ionic gradients to deliver ropivacaine. J Liposome Res. 2016;26(1):1–10. https://doi.org/10.3109/08982104.2015.1022555.

  35. Wibroe PP, Ahmadvand D, Oghabian MA, Yaghmur A, Moghimi SM. An integrated assessment of morphology, size, and complement activation of the PEGylated liposomal doxorubicin products Doxil®, Caelyx®, DOXOrubicin, and SinaDoxosome. J Control Release. 2016;221:1–8. https://doi.org/10.1016/j.jconrel.2015.11.021.

    Article  CAS  PubMed  Google Scholar 

  36. Kartal GE, Sarıışık AM, Erkan G, Öztürk EA, Öztürk B. Effects of Phosphatidylcholine/Cholesterol Liposome-Assisted Dyeing on Woolen Fabric Properties. Journalof Natural Fibers. 2019:1–17. https://doi.org/10.1080/15440478.2019.1675212.

  37. Taniguchi H, Mulhall JP. Intraoperative intracavernosal liposomal bupivacaine (Exparel) injection does not affect systemic hemodynamics. J Sex Med. 2020;17(3):526–30. https://doi.org/10.1016/j.jsxm.2019.12.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Arbelaez-Camargo D, Suñé-Negre JM, Roig-Carreras M, García-Montoya E, Pérez-Lozano P, Miñarro-Carmona M, et al. Preformulation and characterization of a lidocaine hydrochloride and dexamethasone sodium phosphate thermo-reversible and bioadhesive long-acting gel for intraperitoneal administration. Int J Pharm. 2016;498(1-2):142–52. https://doi.org/10.1016/j.ijpharm.2015.12.012.

  39. Mura P, Maestrelli F, González-Rodríguez ML, Michelacci I, Ghelardini C, Rabasco AM. Development, characterization and in vivo evaluation of benzocaine-loaded liposomes. Eur J Pharm Biopharm. 2007;67(1):86–95. https://doi.org/10.1016/j.ijpharm.2015.12.012.

    Article  CAS  PubMed  Google Scholar 

  40. Franz-Montan M, Baroni D, Brunetto G, Sobral VRV, da Silva CMG, Venâncio P, et al. Liposomal lidocaine gel for topical use at the oral mucosa: characterization, in vitro assays and in vivo anesthetic efficacy in humans. J Liposome Res. 2015;25(1):11–9. https://doi.org/10.3109/08982104.2014.911315.

  41. Ruel-Gariepy E, Leclair G, Hildgen P, Gupta A, Leroux JC. Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. J Control Release. 2002;82(2-3):373–83. https://doi.org/10.1016/S0168-3659(02)00146-3.

    Article  CAS  PubMed  Google Scholar 

  42. El-Menshawe SF, Ali AA, Rabeh MA, Khalil NM. Nanosized soy phytosome-based thermogel as topical anti-obesity formulation: an approach for acceptable level of evidence of an effective novel herbal weight loss product. Int J Nanomedicine. 2018;13:307–18. https://doi.org/10.2147/IJN.S153429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dumortier G, Grossiord JL, Agnely F, Chaumeil JC. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res. 2006;23(12):2709–28. https://doi.org/10.1007/s11095-006-9104-4.

    Article  CAS  PubMed  Google Scholar 

  44. Thambi T, Li Y, Lee DS. Injectable hydrogels for sustained release of therapeutic agents. J Control Release. 2017;267:57–66. https://doi.org/10.1016/j.jconrel.2017.08.006.

    Article  CAS  PubMed  Google Scholar 

  45. Chang HI, Yeh MK. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine. 2012;7:49. https://doi.org/10.2147/IJN.S26766.

    Article  CAS  PubMed  Google Scholar 

  46. Giuliano E, Paolino D, Fresta M, Cosco D. Drug-loaded biocompatible nanocarriers embedded in poloxamer 407 hydrogels as therapeutic formulations. Medicines. 2018;6(1):7. https://doi.org/10.3390/medicines6010007.

    Article  CAS  PubMed Central  Google Scholar 

  47. Yong CS, Choi JS, Quan Q-Z, Rhee J-D, Kim C-K, Lim S-J, et al. Effect of sodium chloride on the gelation temperature, gel strength and bioadhesive force of poloxamer gels containing diclofenac sodium. Int J Pharm. 2001;226:195–205. https://doi.org/10.1016/S0378-5173(01)00809-2.

  48. Fathalla ZM, Vangala A, Longman M, Khaled KA, Hussein AK, El-Garhy OH, et al. Poloxamer-based thermoresponsive ketorolac tromethamine in situ gel preparations: Design, characterisation, toxicity and transcorneal permeation studies. Eur J PharmBiopharm. 2017;114:119–34. https://doi.org/10.1016/j.ejpb.2017.01.008.

  49. Mahboobian MM, Seyfoddin A, Aboofazeli R, Foroutan SM, Rupenthal ID. Brinzolamide–loaded nanoemulsions: ex vivo transcorneal permeation, cell viability and ocular irritation tests. Pharm Dev Technol. 2019;24(5):600–6. https://doi.org/10.1080/10837450.2018.1547748.

    Article  CAS  PubMed  Google Scholar 

  50. Mahboobian MM, Mohammadi M, Mansouri Z. Development of thermosensitive in situ gel nanoemulsions for ocular delivery of acyclovir. J Drug Deliv Sci Technol. 2020;55:101400. https://doi.org/10.1016/j.jddst.2019.101400.

    Article  CAS  Google Scholar 

  51. OECD. Guidelines for the Testing of Chemicals. Test No. 437: Bovine Corneal Opacity and Permeability Test Method for Identifying Ocular Corrosives and Severe Irritants. Section 4: Health Effects. 2009. https://doi.org/10.1016/j.tiv.2005.10.003.

  52. Sousa GD. Kishishita J, Aquino KA, Presgrave OA, Leal, L. B & Santana, D. P. Biopharmaceutical assessment and irritation potential of microemulsions and conventional systems containing oil from Syagrus cearensis for topical delivery of amphotericin B using alternative methods. AAPS Pharm Sci Tech. 2017;18(5):1833–42. https://doi.org/10.1208/s12249-016-0663-3.

    Article  CAS  Google Scholar 

  53. Zhao Y, He M, Zhao L, Wang S, Li Y, Gan L, et al. Epichlorohydrin-cross-linked hydroxyethyl cellulose/soy protein isolate composite films as biocompatible and biodegradable implants for tissue engineering. ACS ApplMater Interfaces. 2016;8(4):2781–95. https://doi.org/10.1021/acsami.5b11152.

  54. Gabriel RA, Ilfeld BM. An updated review on liposome bupivacaine. Curr Anesthesiol Rep. 2019;9(3):321–5. https://doi.org/10.1007/s40140-019-00327-y.

    Article  Google Scholar 

  55. Draft Guidance for Industry. Liposome drug products, chemistry, manufacturing, and controls; human pharmacokinetics and bioavailability; and labeling documentation. U.S. Food andDrugAdministration

  56. KARTAL, GülşahEkin et al. Effects of Phosphatidylcholine/Cholesterol Liposome-Assisted Dyeing on Woolen Fabric Properties. J. Nat. Fibers. 2019; 1-17.Doi: 10.1080/15440478.2019.1675212.

  57. Shiju XU &Xueqin AN. Preparation, microstructure and function for injectable liposome-hydrogels. COLLOID SURFACE A. 2019; 560: 20-25. https://doi.org/10.1016/j.colsurfa.2018.09.037.

Download references

Acknowledgments

The authors are grateful for the financial support of Council for Scientific and Technological Development- CNPq (402282/2013-2), as well as the CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil) for the grant, NUDFAC/ Farmácia Escola Carlos Drummond de Andrade/UFPE and Laboratório de NanotecnologiaFarmacêutica (LNFarm/LIKA/ UFPE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Rosa Brissant de Andrade.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Andrade, A.R.B., de Siqueira Ferraz-Carvalho, R., Gibson, V.P. et al. Levobupivacaine-Loaded Liposome Associated with Thermogel for Prolonged Analgesia. AAPS PharmSciTech 22, 104 (2021). https://doi.org/10.1208/s12249-021-01942-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-01942-x

KEY WORDS

Navigation