Skip to main content
Log in

A Novel Drug Delivery System: the Encapsulation of Naringenin in Metal-Organic Frameworks into Liposomes

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Poorly water-soluble naringenin (NAR) was selected as a model drug and loaded into the porous MOFs for the construction of NAR@ZIF-8 inclusion complex. By film dispersion method, NAR@ZIF-8 was further encapsulated into liposomes to fabricate a novel drug delivery system. Liposomes and a novel drug delivery system were established. Subsequently, the lipid-drug ratio, phospholipid-cholesterol ratio, and hydration temperature were investigated using the Box-Behnken design based the single factor experiment. The prepared liposomes system showed spherical or quasi-spherical shape, uniform particle size distribution, and complete structure. More specifically, the average particle size was 113.2 ± 1.4 nm, and zeta potential was − 7.536 ± 0.264 mV. Moreover, the drug release behaviors of NAR, NAR@ZIF-8, and NAR@ZIF-8 liposomes were explored in vitro. Compared with free NAR and NAR@ZIF-8 which exhibited a burst drug release, NAR@ZIF-8 liposomes showed a more sustained release behavior with 79.86% drug release in 72 h. In vitro cytotoxicity experiments showed that, compared with free NAR and NAR@ZIF-8, NAR@ZIF-8 liposomes exhibited higher inhibition efficiency on lung adenocarcinoma A549 cells and gastric cancer SGC-7901 cells in a concentration-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tang Y, Jin P, He Q, Lu L, Ma J, Gao W, et al. Naringenin ameliorates hypoxia/reoxygenation-induced endoplasmic reticulum stress-mediated apoptosis in H9c2 myocardial cells: involvement in ATF6, IRE1α and PERK signaling activation. Mol Cell Biochem. 2017;424(1–2):111–22.

    Article  CAS  PubMed  Google Scholar 

  2. Patel K, Singh GK, Patel DK. A review on pharmacological and analytical aspects of naringenin. Chin J Integr Med. 2018;24(7):551–60.

    Article  CAS  PubMed  Google Scholar 

  3. You Q, Wu Z, Wu B, Liu C, Huang R, Yang L. Naringenin protects cardiomyocytes against hyperglycemia-induced injuries in vitro and in vivo. J Endocrinol. 2016;230(2):197–14.

    Article  CAS  PubMed  Google Scholar 

  4. Yen H, Liu C, Ye CC. Naringenin suppresses TPA-induced tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. Chem Biol Interact. 2015;235:1–9.

    Article  CAS  PubMed  Google Scholar 

  5. Lei B, Feng L, Guo H, Yong L, Tan B, Zhang W, et al. Naringenin inhibits proliferation, migration, and invasion as well as induces apoptosis of gastric cancer SGC7901 cell line by downregulation of AKT pathway. Tumor Biol. 2016;37(8):11365–74.

    Article  Google Scholar 

  6. Zhai B, Xu H, Li Z, Cao C, Bin Z. A water-stable metal-organic framework: serving as a chemical sensor of PO43– and a catalyst for CO2 conversion. Sci China Chem. 2017;60(10):1328–33.

    Article  CAS  Google Scholar 

  7. Wang T, Jia Y, Chen Q, Feng Q, Tian S, Hu T. A luminescent metal–organic framework for selective sensing of Fe3+ with excellent recyclability. Inorg Chem Commun. 2016;65:9–12.

    Article  CAS  Google Scholar 

  8. Lee J, Kwak JH, Choe W. Evolution of form in metal-organic frameworks. Nat Commun. 2017;8:14070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kanamala M, Wilson WR, Yang M, Palmer B, Wu Z. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials. 2016;85:152–67.

    Article  CAS  PubMed  Google Scholar 

  10. Liu J, Zhong L, Zhang J, Luo T, Zhou J, Zhao X, et al. Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy. Biomaterials. 2016;83:51–65.

    Article  CAS  PubMed  Google Scholar 

  11. Nordin N, Ismail AF, Mustafa A. Aqueous room temperature synthesis of zeolitic imidazole framework(ZIF-8) with various concentrations of triethylamine. RSC Adv. 2014;4(63):33292–300.

    Article  CAS  Google Scholar 

  12. Zhang J, Jiang C, Longo JP, Azevedo RB, Zhang H, Muehlmann LA. An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta Pharm Sin B. 2018;8(2):137–46.

    Article  PubMed  Google Scholar 

  13. Bai J, Li Y, Zhang G. Cell cycle regulation and anticancer drug discovery. Cancer Biol Med. 2017;(04):348–62.

  14. Zhang C, Yang Y, Huang T, Zhao B, Guo X, Wang J, et al. Self-assembled pH-responsive MPEG-b-(PLA-co-PAE) block copolymer micelles for anticancer drug delivery. Biomaterials. 2012;33(26):6273–83.

    Article  CAS  PubMed  Google Scholar 

  15. Zhai B, Wu Q, Wang W, Zhang M, Han X, Li Q, et al. Preparation, characterization, pharmacokinetics and anticancer effects of PEGylated β-elemene liposomes. Cancer Biol Med. 2020;(01):60–75.

  16. Reimer N, Reinsch H, Inge AK, Stock N. New Al-MOFs based on sulfonyldibenzoate ions:a rare example of intralayer porosity. Inorg Chem. 2015;54(2):492–01.

    Article  CAS  PubMed  Google Scholar 

  17. Deng K, Hou Z, Li X, Li C, Zhang Y, Deng X. Aptamer-mediatedup-con-versioncore/MOF shell nanocomposites for targeted drug delivery and cell imaging. Sci Rep. 2015;78:1–7.

  18. Arranja AG, Pathak V, Lammers T, Yang S. Tumor-targeted nanomedicines for cancer theranostics. Pharmacol Res. 2017;115:87–95.

    Article  CAS  PubMed  Google Scholar 

  19. Saalah S, AbdullahH LC, Aung MM. Waterborne polyurethane dispersions synthesized from jatropha oil. Ind Crop Prod. 2015;64:194–200.

    Article  CAS  Google Scholar 

  20. Wu G, Liu G, Chen J. Preparation and properties of thermoset composite films from two-component waterborne polyurethane with low loading level nanofifibrillated cellulose. Prog Org Coat. 2017;106:170–6.

    Article  CAS  Google Scholar 

  21. Zhang D, Williams BL, Beche EM. Becher, flame retardant and hydrophobic cottonfabrics from intumescent coatings. Adv Compos Hybrid Mater. 2018;1:177–84.

    Article  CAS  Google Scholar 

  22. Savadi P, Taghavi-Fard T, Milani M, Nastaran H, Vahid P, McMillan Nigel AJ, et al. Piperacillin encapsulation in nanoliposomes using modified freeze-drying of a monophase solution method: preparation, characterization and in vitro antibacterial activity. Curr Microbiol. 2020;77(9):2356–64.

  23. Jain A, Jain SK. In vitro release kinetics model fifitting of liposomes: an insight. Chem Phys Lipids. 2016;201:28–40.

    Article  CAS  Google Scholar 

  24. Qi PP, Cao M, Song LJ, Chong C, Liu M, Li N, et al. The biological activity of cationic liposomes in drug delivery and toxicity test in animal models. Environ Toxicol Pharmacol. 2016;47:159–64.

    Article  CAS  PubMed  Google Scholar 

  25. Xu H, Paxton JW, Wu Z. Development of long-circulating pH-sensitive liposomes to circumvent gemcitabine resistance in pancreatic cancer cells. Pharm Res 2016;33(7):1628–1637.

    Article  CAS  PubMed  Google Scholar 

  26. Bai C, Zheng J, Zhao L, Chen L, Xiong H, McClements DJ. Development of oral delivery systems with enhanced antioxidant and anticancer activity: coix seed oil and β-carotene coloaded liposomes. J Agric Food Chem. 2019;67(1):406–14.

    Article  CAS  PubMed  Google Scholar 

  27. Wang Q, Wei Q, Yang Q, Cao X, Li Q, Shi F, et al. A novel formulation of [6]-gingerol: proliposomes with enhanced oral bioavailability and antitumor effect. Int J Pharm. 2018;535(1–2):308–15.

    Article  CAS  PubMed  Google Scholar 

  28. Pan Y, Liu Y, Zeng G, Zhao L, Lai Z. Rapid synthesis of zeolitic imidazolate framework-8(ZIF-8) nanocrystals in an aqueous system. Chem Commun. 2011;47(7):2071–3.

    Article  CAS  Google Scholar 

  29. Zhu H, Liu H, Zhitomirsky I, Zhu S. Preparation of metal-organic framework films by electrophoretic deposition method. Mater Lett. 2015;142:19–2.

    Article  CAS  Google Scholar 

  30. Horcajada P, Serre C, Maurin G, Ramsahye NA, Balas F, Vallet-Regí M, et al. Flexible porous metal-organic frameworks for a controlled drug delivery. J Am Chem Soc. 2008;130(21):6774–80.

    Article  CAS  PubMed  Google Scholar 

  31. Samui A, Pal K, Karmakar P, Sahu SK. In situ synthesized lactobionic acid conjugated NMOFs, a smart material for imaging and targeted drug delivery in hepatocellular carcinoma. Mater Sci Eng C. 2019;98:772–81.

    Article  CAS  Google Scholar 

  32. Shirakawa M, Nakai K, Sato Y, Nakamura S, Harada M, Ishihara K, et al. Optimization of preparation methods for high loading content and high encapsulation efficiency of BSH into liposomes. Appl Radiat Isot. 2020:109260.

  33. Zaidul ISM, Fahim TK, Sahena F, Azad AK, Rashid MA, Hossain MS. Dataset on applying HPMC polymer to improve encapsulation efficiency and stability of the fish oil: In vitro evaluation. Data Brief. 2020;32:106111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou T, Tang X, Zhang W, Feng J, Wu W. Preparation and in vitro and in vivo evaluations of 10-hydroxycamptothecin liposomes modified with stearyl glycyrrhetinate. Drug Deliv. 2019;26(1):673–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jiao Z, Wang X, Yin Y, Xia J. Preparation and evaluation of vitamin C and folic acid-coloaded antioxidant liposomes. Part Sci Technol. 2019;37(4):449–55.

    Article  Google Scholar 

  36. Tran TH, Le N, Le H, Bui T, Pham TM. Preparation and characterization of freeze-dried liposomes loaded with amphotericin B. Curr Drug Ther. 2019;14(1):65–73.

    Article  Google Scholar 

  37. Smita R, Bala P. Optimization of paclitaxel containing pH-sensitive liposomes by 3 factor, 3 level Box-Behnken design. Indian J Pharm Sci. 2013;75(4):420–6.

    Article  Google Scholar 

  38. Shi Y, Zhang X, Guo Q. Optimization of formulation and process of paclitaxel PEGylated liposomes by Box-Behnken response surface methodology. J Chin Med Mater. 2015;38(12):2606–10.

    CAS  Google Scholar 

  39. Yu M, Yuan W, Li D, Schwendeman A, Steven P.S. Predicting drug release kinetics from nanocarriers inside dialysis bags. J Control Release 2019;315:23–30.

  40. Xiong Y, Tang H, Ma R, Li F. Preparation process of norcantharidin/tetrandrine dual loaded liposomes and their in vitro release characteristics. China J Chin Mater Med. 2018;43(12):2531–6.

    Google Scholar 

  41. Cheng Z, Xue G, Yang X, He C, Huang W, Xing J. Enhancing the in vitro release of total flavonoids extract from Dracocephalum moldavuca composite phospholipid liposomes optimized by response surface methodology. Pak J Pharm Sci. 2017;30(4):1225–32.

    Google Scholar 

  42. Harpreet K, Girish C, Vandana G, Deepak K, Sachin T. Synthesis and characterization of ZIF-8 nanoparticles for controlled release of 6-mercaptopurine drug. J Drug Delivery Sci Technol. 2017;41:106–12.

    Article  Google Scholar 

  43. Li H, Jiang L, Dong W, Zhang E, Ji Z. Preparation and characterization of ZnO/ZIF-8 composite with selective photoelectrochemical responses. Mater Lett. 2017;201:165–8.

    Article  CAS  Google Scholar 

  44. Celiz G, Suarez SA, Arias A, Molina J, Brondino CD, Doctorovich F. Synthesis, structural elucidation and antiradical activity of a copper (II) naringenin complex. Biomotal. 2019;32(4):595–10.

    Article  CAS  Google Scholar 

  45. Mehmet O, Asif A, Berna D, Serdar K, Serdar D, Mustafa Y. Formation of the inclusion complex of water soluble fluorescent calix[4]arene and naringenin: solubility, cytotoxic effect and molecular modeling studies. J Biomol Struct Dyn. 2020;38(13):3801–13.

    Article  Google Scholar 

  46. Lindsay AW, Lisa JM, Kevin JE, Taylor LS. Mid-infrared spectroscopy as a polymer selection tool for formulating amorphous solid dispersions. J Pharm Pharmacol. 2014;66(2):244–55.

    Article  Google Scholar 

  47. Ebrahim Attia AB, Oh P, Yang C, Tan JP, Rao N, Hedrick JL, et al. Insights into epr effect versus lectin-mediated targeted delivery: biodegradable polycarbonate micellar nanoparticles with and without galactose surface decoration. Small. 2014;10(21):4281–6.

  48. Tanwir K, Shahid MN, Thomas A, Tsoukanova V. Coexisting phases in PEG ylated phosphocholine membranes: a model study. Langmuir. 2012;28(39):14000–9.

    Article  CAS  PubMed  Google Scholar 

  49. Ma Y, Wang H, Wang R, Meng F, Dong Z, Wang G, et al. Cytotoxic lignans from the stems of Herpetospermum pedunculosum. Phytochemistry. 2019;164:102–10.

  50. Wang Q, Wei C, Weng W, Bao R, Adu-Frimpong M, Toreniyazov E, et al. Enhancement of oral bioavailability and hypoglycemic activity of liquiritin-loaded precursor liposome. Int J Pharm. 2020;120036.

  51. Kolter M, Wittmann M, Köll-Weber M, Süss R. The suitability of liposomes for the delivery of hydrophobic drugs - a case study with curcumin. Eur J Pharm Biopharm. 2019;140:20–8.

    Article  CAS  PubMed  Google Scholar 

  52. Gazzano E, Buondonno I, Marengo A, Rolando B, Chegaev K, Kopecka J, et al. Hyaluronated liposomes containing H2S-releasing doxorubicin are effective against P-glycoprotein-positive/doxorubicin-resistant osteosarcoma cells and xenografts. Cancer Lett. 2019;456:29–9.

  53. Wen J, Wang Z, Qiu N, Liu H, Shu X, Zhu Z, et al. Antitumor effects of docetaxel in truncated basic fibroblast growth factor- functionalized liposomes delivered by d-α-tocopheryl polyethylene glycol 2000 succinate. Curr Pharm Des. 2020;26(34):4338–48.

Download references

Funding

We acknowledge financial support by the NSFC (51902079), Key projects of Anhui Provincial Department of Education (KJ2017A626), and Anhui Province College Excellent Young Talents Fund (gxyq2020076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangjie Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liu, L., Yin, W. et al. A Novel Drug Delivery System: the Encapsulation of Naringenin in Metal-Organic Frameworks into Liposomes. AAPS PharmSciTech 22, 61 (2021). https://doi.org/10.1208/s12249-021-01927-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-01927-w

Key words

Navigation