Skip to main content
Log in

Co-processing of Atorvastatin and Ezetimibe for Enhanced Dissolution Rate: In Vitro and In Vivo Correlation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Development of fixed dose combinations is growing and many of these drug combinations are being legally marketed. However, the development of these requires careful investigation of possible physicochemical changes during co-processing. This requires investigation of the effect of co-processing of drug combination in absence of excipients to maximize the chance of interaction (if any). Accordingly, the aim was to investigate the effect of co-processing of ezetimibe and atorvastatin on drugs dissolution rate. The objective was extended to in vitro in vivo correlation. Drugs were subjected to wet co-processing in presence of ethanol after being mixed at different ratios. The prepared formulations were characterized using FTIR spectroscopy, X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy, and in vitro dissolution testing. These investigations proved the possibility of eutectic system formation after drugs co-processing. This was reflected on drugs dissolution rate which was significantly enhanced at dose ratio and 2:1 atorvastatin:ezetimibe molar ratio compared to the corresponding pure drugs. In vivo antihyperlipidemic effects of the co-processed drugs were monitored in albino mice which were subjected to hyperlipidemia induction using poloxamer 407. The results showed significant enhancement in pharmacological activity as revealed from pronounced reduction in cholesterol level in mice administering the co-processed form of both drugs. Besides, histopathological examinations of the liver showed marked decrease in hepatic vacuolation. In conclusion, co-processing of atorvastatin with ezetimibe resulted in beneficial eutexia which hastened the dissolution rate and pharmacological effects of both drugs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alshaikh RA, Essa EA, El Maghraby GM. Eutexia for enhanced dissolution rate and anti-inflammatory activity of nonsteroidal anti-inflammatory agents: caffeine as a melting point modulator. Int J Pharm. 2019;563:395–405.

    Article  CAS  Google Scholar 

  2. Abdelquader MM, Essa EA, El Maghraby GM. Inhibition of co-crystallization of Olmesartan medoxomil and hydrochlorothiazide for enhanced dissolution rate in their fixed dose combination. AAPS PharmSciTech. 2019;20(3):1–12. https://doi.org/10.1208/s12249-018-1207-9.

    Article  CAS  Google Scholar 

  3. Riekes MK, Engelen A, Appeltans B, Rombaut P, Stulzer HK, Van den Mooter G. New perspectives for fixed dose combinations of poorly water-soluble compounds: a case study with ezetimibe and lovastatin. Pharm Res. 2016;33(5):1259–75.

    Article  CAS  Google Scholar 

  4. Wang FY, Zhang Q, Zhang Z, Gong X, Wang JR, Mei X. Solid-state characterization and solubility enhancement of apremilast drug–drug cocrystals. Cryst Eng Comm. 2018;20(39):5945–8.

    Article  CAS  Google Scholar 

  5. Górniak A, Irzabek HC, Złocińska A, Karolewicz B. Physicochemical and dissolution properties of ezetimibe–aspirin binary system in development of fixed-dose combinations. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09543-9.

  6. Rodde MS, Divase GT, Devkar TB, Tekade AR. Solubility and bioavailability enhancement of poorly aqueous soluble atorvastatin: in vitro, ex vivo, and in vivo studies. Biomed Res Int. 2014;2014:463895–10. https://doi.org/10.1155/2014/463895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Prabhu P, Patravale V. Dissolution enhancement of atorvastatin calcium by co-grinding technique. Drug Deliv and Transl Res. 2016;6:380–91.

    CAS  Google Scholar 

  8. Zhang HX, Wang JX, Zhang ZB, Le Y, Shen ZG, Chen JF. Micronization of atorvastatin calcium by antisolvent precipitation process. Int J Pharm. 2009;5;374(1-2):106-113.

  9. Kurakula M, El-Helw AM, Sobahi TR, Abdelaal MY. Chitosan based atorvastatin nanocrystals: effect of cationic charge on particle size, formulation stability, and in-vivo efficacy. Int J Nanomedicine. 2015;10:321–34.

    Article  Google Scholar 

  10. Sharma M, Mehta I. Surface stabilized atorvastatin nanocrystals with improved bioavailability, safety and antihyperlipidemic potential. Sci Rep. 2019;9:16105. https://doi.org/10.1038/s41598-019-52645-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Al-Kazemi R, Al-Basarah Y, Nada A. Dissolution enhancement of atorvastatin calcium by cocrystallization. Adv Pharm Bull. 2019;9:559–70.

    Article  CAS  Google Scholar 

  12. Shayanfar A, Ghavimi H, Hamishekar H, Jouyban A. Coamorphous atorvastatin calcium to improve its physicochemical and pharmacokinetic properties. J Pharm Pharm Sci. 2013;16(4):577–87.

    Article  Google Scholar 

  13. Shamsuddin FM, Ansari SH, Ali J. Atorvastatin solid dispersion for bioavailability enhancement. J Adv Pharm Technol Res. 2016;7(1):22–6.

    Article  CAS  Google Scholar 

  14. Shaker MA, Elbadawy HM, Shaker MA. Improved solubility, dissolution, and oral bioavailability for atorvastatin-Pluronic(R) solid dispersions. Int J Pharm. 2020;574:118891. https://doi.org/10.1016/j.ijpharm.2019.118891.

    Article  CAS  PubMed  Google Scholar 

  15. Yeom DW, Song YS, Kim SR, Lee SG, Kang MH, Lee S, et al. Development and optimization of a self-microemulsifying drug delivery system for atorvastatin calcium by using D-optimal mixture design. Int J Nanomedicine. 2015;10:3865–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kassem AM, Ibrahim HM, Samy AM. Development and optimisation of atorvastatin calcium loaded self-nanoemulsifying drug delivery system (SNEDDS) for enhancing oral bioavailability: in vitro and in vivo evaluation. J Microencapsul. 2017;34(3):319–33.

    Article  CAS  Google Scholar 

  17. Hashem FM, Al-Sawahli MM, Nasr M, Ahmed OA. Optimized zein nanospheres for improved oral bioavailability of atorvastatin. Int J Nanomedicine. 2015;10:4059–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zidan MF, Ibrahim HM, Afouna MI, Ibrahim EA. In vitro and in vivo evaluation of cyclodextrin-based nanosponges for enhancing oral bioavailability of atorvastatin calcium. Drug Dev Ind Pharm. 2018;44(8):1243–53.

    Article  CAS  Google Scholar 

  19. Phan BA, Dayspring TD, Toth PP. Ezetimibe therapy: mechanism of action and clinical update. Vasc Health Risk Manag. 2012;8:415–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sharma N, Singh S. Central composite designed ezetimibe solid dispersion for dissolution enhancement: synthesis and in vitro evaluation. Ther Deliv. 2019;10(10):643–58.

    Article  CAS  Google Scholar 

  21. Torrado-Salmerón C, Guarnizo-Herrero V, Cerezo-Garreta J, Torrado Durán G, Torrado-Santiago S. Self-micellizing technology improves the properties of ezetimibe and increases its effect on hyperlipidemic rats. Pharmaceutics. 2019;11:647. https://doi.org/10.3390/pharmaceutics11120647.

    Article  CAS  PubMed Central  Google Scholar 

  22. Bandyopadhyay S, Katare OP, Singh B. Optimized self nano-emulsifying systems of ezetimibe with enhanced bioavailability potential using long chain and medium chain triglycerides. Colloids Surf B: Biointerfaces. 2012;1(100):50–61.

    Article  Google Scholar 

  23. Srivalli KM, Mishra B. Improved aqueous solubility and antihypercholesterolemic activity of ezetimibe on formulating with hydroxypropyl-β-cyclodextrin and hydrophilic auxiliary substances. AAPS PharmSciTech. 2016;17(2):272–83.

    Article  CAS  Google Scholar 

  24. Jahangiri A, Barzegar-Jalali M, Garjani A, Javadzadeh Y, Hamishehkar H, Asadpour-Zeynali K, et al. Evaluation of physicochemical properties and in vivo efficiency of atorvastatin calcium/ezetimibe solid dispersions. Eur J Pharm Sci. 2016;82:21–30.

    Article  CAS  Google Scholar 

  25. Jahangiri A, Barzegar-Jalali M, Javadzadeh Y, Hamishehkar H, Adibkia K. Physicochemical characterization of atorvastatin calcium/ezetimibe amorphous nano-solid dispersions prepared by electrospraying method. Artif Cells Nanomed Biotechnol. 2017;45(6):1–8.

    Article  Google Scholar 

  26. Hwang KM, Park SA, Kim JY, Park CW, Rhee YS, Park ES. Formulation and in vitro evaluation of self-microemulsifying drug delivery system containing fixed-dose combination of atorvastatin and ezetimibe. Chem Pharm Bull (Tokyo). 2015;63(6):423–30.

    Article  CAS  Google Scholar 

  27. Alshaikh RA, Essa EA, El Maghraby GM. Preparation of stabilized submicron fenofibrate crystals on niacin as a hydrophilic hydrotropic carrier. Pharm Dev Technol. 2020;25(2):168–77.

    Article  CAS  Google Scholar 

  28. Khan KA. The concept of dissolution efficiency. J Pharm Pharmacol. 1975;27:48–9.

    Article  CAS  Google Scholar 

  29. Chaudhary HR, Brocks DR. The single dose poloxamer 407 model of hyperlipidemia; systemic effects on lipids assessed using pharmacokinetic methods, and its effects on adipokines. J Pharm Pharm Sci. 2013;16(1):65–73.

    Article  CAS  Google Scholar 

  30. Rawal T, Mishra N, Jha A. B Apurva, Tyagi RK., Panchal S, Butani S. Chitosan nanoparticles of gamma-oryzanol: formulation, optimization, and in vivo evaluation of anti-hyperlipidemic activity. AAPS PharmSciTech. 2018;19:1894–907.

    Article  CAS  Google Scholar 

  31. Leon C, Wasan KM, Sachs-Barrable K, Johnston TP. Acute P-407 administration to mice causes hypercholesterolemia by inducing cholesterolgenesis and down-regulating low-density lipoprotein receptor expression. Pharm Res. 2006;23:1597–607.

    Article  CAS  Google Scholar 

  32. Whittaker P, Hines FA, Robl MG, Dunkel VC. Hisopathological evaluation of liver, pancreas, spleen, and heart from iron-overloaded Sprague-dawley rats*1,2. Toxicol Pathol. 1996;24(5):558–63.

    Article  CAS  Google Scholar 

  33. Arafa MF, El-Gizawy SA, Osman MA, El Maghraby GM. Sucralose as co-crystal co-former for hydrochlorothiazide: development of oral disintegrating tablets. Drug Dev Ind Pharm. 2016;42(8):1225–33.

    Article  CAS  Google Scholar 

  34. Dey S, Chattopadhyay S, Mazumder B. Formulation and evaluation of fixed-dose combination of bilayer gastroretentive matrix tablet containing atorvastatin as fast-release and atenolol as sustained-release. Biomed Res Int. 2014;2014:396106–12. https://doi.org/10.1155/2014/396106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thadkala K, Nanam PK, Rambabu B, Sailu C, Aukunuru J. Preparation and characterization of amorphous ezetimibe nanosuspensions intended for enhancement of oral bioavailability. Int J Pharm Invest. 2014;4(3):131–7.

    Article  Google Scholar 

  36. Shete G, Puri V. Kumar, Bansal AK. Solid state characterization of commercial crystalline and L amorphous atorvastatin calcium samples. AAPS PharmSciTech. 2010;11(2):598–609.

    Article  CAS  Google Scholar 

  37. Choudhary A, Rana AC, Aggarwal G, Kumar V, Zakir F. Development and characterization of an atorvastatin solid dispersion formulation using skimmed milk for improved oral bioavailability. Acta Pharm Sin B. 2012;2:421–8.

    Article  CAS  Google Scholar 

  38. Mendhe AA, Kharwade RS, Mahajan UN. Dissolution enhancement of poorly water-soluble drug by cyclodextrins inclusion complexation. Int J App Pharm. 2016;8(4):60–5.

    CAS  Google Scholar 

  39. Shevalkar G, Vavia P. Solidified nanostructured lipid carrier (S-NLC) for enhancing the oral bioavailability of ezetimibe. J Drug Deliv Sci Technol. 2019;53:101211. https://doi.org/10.1016/j.jddst.2019.101211.

    Article  CAS  Google Scholar 

  40. Zaini E, Wahyuni YS, Halim A, Yuliandra Y. Preparation of eutectic mixture of ketoprofen and nicotinamide for enhanced dissolution rate. Int J Pharm Sci Rev Res. 2015;35(1):161–4.

    CAS  Google Scholar 

  41. Umerska A, Bialek K, Zotova J, Skotnicki M, Tajber L. Anticrystal engineering of ketoprofen and ester local anesthetics: ionic liquids or deep eutectic mixtures? Pharmaceutics. 2020;12:368. https://doi.org/10.3390/pharmaceutics12040368.

    Article  CAS  PubMed Central  Google Scholar 

  42. Dixit RP, Nagarsenker MS. Formulation and in vivo evaluation of self-nanoemulsifying granules for oral delivery of a combination of ezetimibe and simvastatin. Drug Dev Ind Pharm. 2008;34(12):1285–96.

    Article  CAS  Google Scholar 

  43. Zaini E, Azhari D, Fitriani L. Identification and characterization of solid binary system of quercetin-nicotinamide. Orient J Chem. 2016;32(3):1545–50.

    Article  CAS  Google Scholar 

  44. Araya-Sibaja AM, Vega-Baudrit JR, Guillén-Girón T, Navarro-Hoyos M, Cuffini SL. Drug solubility enhancement through the preparation of multicomponent organic materials: eutectics of lovastatin with carboxylic acids. Pharmaceutics. 2019;11:112–28.

    Article  CAS  Google Scholar 

  45. Kunam V, Suryadevara V, Garikapat DR, Basaveswara V, Mandava R, Sunkara SP. Solubility and dissolution rate enhancement of ezetimibe by solid dispersion and pelletization techniques. Asian J Pharm Clin Res. 2019;12(3):407–13.

    Article  CAS  Google Scholar 

  46. Özkan CK, Ozgur E, Kurbanoglu S, Savaser A, Ozkan SA, Yalcin O. Development of a suitable dissolution method for the combined tablet formulation of atorvastatin and ezetimibe by RP-LC Method. Current Drug Delivery. 2016;13(3):424–30.

    Article  Google Scholar 

  47. Sinulingga S, Putri HOV, Haryadi K, Subandrate. The effect of pindang patin intake on serum cholesterol and LDL levels of male mice (Mus Musculus L.). J Phys Conf Ser. 2019:1246. https://doi.org/10.1088/1742-6596/1246/1/012060.

  48. Ma YB, Chan P, Zhang Y, Tomlinson B, Liu Z. Evaluating the efficacy and safety of atorvastatin + ezetimibe in a fixed-dose combination for the treatment of hypercholesterolemia. Expert Opin Pharmacother. 2019;20(8):917–28.

    Article  CAS  Google Scholar 

  49. Ha ES, Kim JS, Baek I, Hwang SJ, Kim MS. Enhancement of dissolution and bioavailability of ezetimibe by amorphous solid dispersion nanoparticles fabricated using supercritical antisolvent process. J Pharm Investig. 2015;45(7):641–9.

    Article  CAS  Google Scholar 

  50. Staprans I, Pan X, Rapp JH, Grunfeld C, Feingold KR. Oxidized cholesterol in the diet accelerates the development of atherosclerosis in LDL receptor– and apolipoprotein E–deficient mice. Arterioscler Thromb Vasc Biol. 2000;20:708–14.

    Article  CAS  Google Scholar 

  51. Kengkoom K, Klinkhamhom A, Sirimontaporn A, Singha O, Ketjareon T, Panavechkijkul Y, et al. Effects on high cholesterol-fed to liver, retina, hippocampus, and Harderian gland in Goto-Kakizaki rat. Int J Clin Exp Pathol. 2013;6(4):639–49.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona F. Arafa.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arafa, M.F., Alshaikh, R.A., Abdelquader, M.M. et al. Co-processing of Atorvastatin and Ezetimibe for Enhanced Dissolution Rate: In Vitro and In Vivo Correlation. AAPS PharmSciTech 22, 59 (2021). https://doi.org/10.1208/s12249-021-01925-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-01925-y

KEY WORDS

Navigation