Skip to main content

Advertisement

Log in

Multifunctional Role of Polyvinylpyrrolidone in Pharmaceutical Formulations

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Polyvinylpyrrolidone (PVP), a non-ionic polymer, has been employed in multifarious fields such as paper, fibers and textiles, ceramics, and pharmaceutics due to its superior properties. Especially in pharmacy, the properties of inertness, non-toxicity, and biocompatibility make it a versatile excipient for both conventional formulations and novel controlled or targeted delivery systems, serving as a binder, coating agent, suspending agent, pore-former, solubilizer, stabilizer, etc. PVP with different molecular weights (MWs) and concentrations is used in a variety of formulations for different purposes. In this review, PVP-related researches mainly in recent 10 years were collected, and its main pharmaceutical applications were summarized as follows: (i) improving the bioavailability and stability of drugs, (ii) improving the physicomechanical properties of preparations, (iii) adjusting the release rate of drugs, and (iv) prolonging the in vivo circulation time of liposomes. Most of these applications could be explained by the viscosity, solubility, hydrophilicity, and hydrogen bond–forming ability of PVP, and the specific action mechanisms for each application were also tried to figure out. The effect of PVP on bioavailability improvement establishes it as a promising polymer in the emerging controlled or targeted formulations, attracting growing interest on it. Therefore, given its irreplaceability and tremendous opportunities for future developments, this review aims to provide an informative reference about current roles of PVP in pharmacy for interested readers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Kariduraganavar MY, Kittur AA, Kamble RR. Chapter 1 - polymer synthesis and processing. In: Kumbar SG, Laurencin CT, Deng M, editors. Natural and synthetic biomedical polymers. Oxford: Elsevier; 2014. p. 1–31. https://doi.org/10.1016/B978-0-12-396983-5.00001-6.

    Chapter  Google Scholar 

  2. Rowe RC. Paul S, and Marian Q. Handbook of pharmaceutical excipients: Pharmaceutical Press; 2009.

    Google Scholar 

  3. Robinson BV, Sullivan FM, Borzelleca JF, Schwartz SL. A critical review of the kinetics and toxicology of polyvinylpyrrolidone (Povidone). Michigan: Lewis Publishers; 1990.

    Google Scholar 

  4. Chinatangkul N, Tubtimsri S, Panchapornpon D, Akkaramongkolporn P, Limmatvapirat C, Limmatvapirat S. Design and characterisation of electrospun shellac-polyvinylpyrrolidone blended micro/nanofibres loaded with monolaurin for application in wound healing. Int J Pharm. 2019;562:258–70. https://doi.org/10.1016/j.ijpharm.2019.03.048.

    Article  CAS  PubMed  Google Scholar 

  5. Godakanda VU, Li H, Alquezar L, Zhao L, Zhu LM, de Silva R, et al. Tunable drug release from blend poly (vinyl pyrrolidone)-ethyl cellulose nanofibers. Int J Pharm. 2019;562:172–9. https://doi.org/10.1016/j.ijpharm.2019.03.035.

    Article  CAS  PubMed  Google Scholar 

  6. Anderson C, Rodriguez F, Thurston D. Crosslinking aqueous poly (vinyl pyrrolidone) solutions by persulfate. J Appl Polym Sci. 1979;23:2453–62. https://doi.org/10.1002/app.1979.070230823.

    Article  CAS  Google Scholar 

  7. Haaf F, Sanner A, Strau F. Polymers of N-vinylpyrrolidone: synthesis, characterization and uses. Polym J. 1985;17:143–52. https://doi.org/10.1295/polymj.17.143.

    Article  CAS  Google Scholar 

  8. Yang M, Xie S, Li Q, Wang Y, Chang X, Shan L, et al. Effects of polyvinylpyrrolidone both as a binder and pore-former on the release of sparingly water-soluble topiramate from ethylcellulose coated pellets. Int J Pharm. 2014;465:187–96. https://doi.org/10.1016/j.ijpharm.2014.02.021.

    Article  CAS  PubMed  Google Scholar 

  9. Buttini F, Colombo P, Wenger M, Mesquida P, Marriott C, Jones SA. Back to basics: the development of a simple, homogenous, two-component dry-powder inhaler formulation for the delivery of budesonide using miscible vinyl polymers. J Pharm Sci. 2008;97:1257–67. https://doi.org/10.1002/jps.21126.

    Article  CAS  PubMed  Google Scholar 

  10. Lin SP, Hou YC, Liao TY, Tsai SY. Enhancing the bioavailability of magnolol in rabbits using melting solid dispersion with polyvinylpyrrolidone. Drug Dev Ind Pharm. 2014;40:330–7. https://doi.org/10.3109/03639045.2012.760580.

    Article  CAS  PubMed  Google Scholar 

  11. Ali R, Mehta P, Monou PK, Arshard MS, Ahmad Z. Electrospinning/electrospraying coatings for metal microneedles: a design of experiments (DOE) and Quality by Design (QbD) approach. Eur J Pharm Biopharm. 2020;156:20–39. https://doi.org/10.1016/j.ejpb.2020.08.023.

    Article  CAS  PubMed  Google Scholar 

  12. Wei J, Talbot JB. Viscosity correlation for aqueous polyvinylpyrrolidone (PVP) solutions. J Appl Polym Sci. 2003;90:1153–5. https://doi.org/10.1002/app.12799.

    Article  CAS  Google Scholar 

  13. Morkhade DM. Comparative impact of different binder addition methods, binders and diluents on resulting granule and tablet attributes via high shear wet granulation. Powder Technol. 2017;320:114–24. https://doi.org/10.1016/j.powtec.2017.07.038.

    Article  CAS  Google Scholar 

  14. Zhao Y, Xie X, Zhao Y, Gao Y, Cai C, Zhang Q, et al. Effect of plasticizers on manufacturing ritonavir/copovidone solid dispersions via hot-melt extrusion: Preformulation, physicochemical characterization, and pharmacokinetics in rats. Eur J Pharm Sci. 2019;127:60–70. https://doi.org/10.1016/j.ejps.2018.10.020.

    Article  CAS  PubMed  Google Scholar 

  15. Pezzoli R, Lyons JG, Gately N, Higginbotham CL. Investigation of miscibility estimation methods between indomethacin and poly (vinylpyrrolidone-co-vinyl acetate). Int J Pharm. 2018;549:50–7. https://doi.org/10.1016/j.ijpharm.2018.07.039.

    Article  CAS  PubMed  Google Scholar 

  16. Kean R, McKloud E, Townsend EM, Sherry L, Delaney C, Jones BL, et al. The comparative efficacy of antiseptics against Candida auris biofilms. Int J Antimicrob Agents. 2018;52:673–7. https://doi.org/10.1016/j.ijantimicag.2018.05.007.

    Article  CAS  PubMed  Google Scholar 

  17. Châtellier X, Bottero JY, Petit JL. Adsorption of a cationic polyelectrolyte on Escherichia coli Bacteria: 1. Adsorption of the Polymer Langmuir. 2001;17:2782–90. https://doi.org/10.1021/la0007628.

    Article  CAS  Google Scholar 

  18. Jain SP, Mehta DC, Shah SP, Singh PP, Amin PD. Melt-in-mouth pellets of fexofenadine hydrochloride using crospovidone as an extrusion-spheronisation aid. AAPS PharmSciTech. 2010;11:917–23.

    Article  CAS  Google Scholar 

  19. Teodorescu M, Bercea M. Poly(vinylpyrrolidone) – a versatile polymer for biomedical and beyond medical applications. Polym-Plast Technol Eng. 2015;54:923–43. https://doi.org/10.1080/03602559.2014.979506.

    Article  CAS  Google Scholar 

  20. Luo YP, Zhao YB, Liu S. Evaluation of DFO/PVP and its application to latent fingermarks development on thermal paper. Forensic Sci Int. 2013;229:75–9. https://doi.org/10.1080/03602559.2014.979506.

    Article  CAS  PubMed  Google Scholar 

  21. Mestre S, Chiva C, Palacios MD, Amorós JL. Development of a yellow ceramic pigment based on silver nanoparticles. J Eur Ceram Soc. 2012;32:2825–30. https://doi.org/10.1016/j.jeurceramsoc.2011.12.006.

    Article  CAS  Google Scholar 

  22. Ramanujam K, Sundrarajan M. Grafting of cellulosic fabric using pvp with mgo nanoparticles for improve performance of bacterial and fungal. World J Pharm Pharm Sci. 2014;3:1989–2004.

    CAS  Google Scholar 

  23. Ahmed MA, Khafagy RM, Bishay ST, Saleh NM. Effective dye removal and water purification using the electric and magnetic Zn0.5Co0.5Al0.5Fe1.46La0.04O4/polymer core–shell nanocomposites. J Alloys Compd. 2013;578:121–31. https://doi.org/10.1016/j.jallcom.2013.04.182.

    Article  CAS  Google Scholar 

  24. Julinova M, Vanharova L, Jurca M. Water-soluble polymeric xenobiotics - polyvinyl alcohol and polyvinylpyrrolidon - and potential solutions to environmental issues: a brief review. J Environ Manag. 2018;228:213–22. https://doi.org/10.1016/j.jenvman.2018.09.010.

    Article  CAS  Google Scholar 

  25. Franco P, De Marco I. The use of poly(N-vinyl pyrrolidone) in the delivery of drugs: a review. Polymers (Basel). 2020;12:1114. https://doi.org/10.3390/polym12051114.

    Article  CAS  Google Scholar 

  26. Qiu Y, Chen Y, Zhang GG, Yu L, Mantri RV. Developing solid oral dosage forms: pharmaceutical theory and practice. Lodon: Academic press; 2016.

    Google Scholar 

  27. Tran TH, Poudel BK, Marasini N, Woo JS, Choi HG, Yong CS, et al. Development of raloxifene-solid dispersion with improved oral bioavailability via spray-drying technique. Arch Pharm Res. 2013;36:86–93. https://doi.org/10.1007/s12272-013-0012-y.

    Article  CAS  PubMed  Google Scholar 

  28. Martinez-Marcos L, Lamprou DA, McBurney RT, Halbert GW. A novel hot-melt extrusion formulation of albendazole for increasing dissolution properties. Int J Pharm. 2016;499:175–85. https://doi.org/10.1016/j.ijpharm.2016.01.006.

    Article  CAS  PubMed  Google Scholar 

  29. de Souza CMP, dos Santos JAB, do Nascimento AL, Chaves Júnior JV, de Lima Ramos Júnior FJ, de Lima Neto SA, et al. Thermal analysis study of solid dispersions hydrochlorothiazide. J Therm Anal Calorim. 2017;131(1):681–9.

    Article  Google Scholar 

  30. Alves LD, de La Roca Soares MF, de Albuquerque CT, da Silva ER, Vieira AC, Fontes DA, et al. Solid dispersion of efavirenz in PVP K-30 by conventional solvent and kneading methods. Carbohydr Polym. 2014;104:166–74. https://doi.org/10.1016/j.carbpol.2014.01.027.

    Article  CAS  PubMed  Google Scholar 

  31. Knapik J, Wojnarowska Z, Grzybowska K, Tajber L, Mesallati H, Paluch KJ, et al. Molecular Dynamics and Physical Stability of Amorphous Nimesulide Drug and Its Binary Drug–Polymer Systems. Mol Pharm. 2016;13:1937–46. https://doi.org/10.1021/acs.molpharmaceut.6b00115.

    Article  CAS  PubMed  Google Scholar 

  32. Paisana MC, Wahl MA, Pinto JF. Effect of polymers in moisture sorption and physical stability of polymorphic olanzapine. Eur J Pharm Sci. 2017;97:257–68. https://doi.org/10.1016/j.ejps.2016.11.023.

    Article  CAS  PubMed  Google Scholar 

  33. Chavan RB, Thipparaboina R, Kumar D, Shastri NR. Evaluation of the inhibitory potential of HPMC, PVP and HPC polymers on nucleation and crystal growth. RSC Adv. 2016;6:77569–76. https://doi.org/10.1039/c6ra19746a.

    Article  CAS  Google Scholar 

  34. Sakurai A, Sakai T, Sako K, Maitani YJC. Polymer combination increased both physical stability and oral absorption of solid dispersions containing a low glass transition temperature drug: physicochemical characterization and in vivo study. Chem. Pharm. Bull. 2012;60:459–64. Chem Pharm Bull. 2012;60:459–64. https://doi.org/10.1248/cpb.60.459.

    Article  CAS  Google Scholar 

  35. Patel DD, Anderson BD. Adsorption of polyvinylpyrrolidone and its impact on maintenance of aqueous supersaturation of indomethacin via crystal growth inhibition. J Pharm Sci. 2015;104:2923–33. https://doi.org/10.1002/jps.24493.

    Article  CAS  PubMed  Google Scholar 

  36. Thenmozhi K, Yoo YJ. Enhanced solubility of piperine using hydrophilic carrier-based potent solid dispersion systems. Drug Dev Ind Pharm. 2017;43:1501–9. https://doi.org/10.1080/03639045.2017.1321658.

    Article  CAS  PubMed  Google Scholar 

  37. Zhai X, Li C, Lenon GB, Xue CCL, Li W. Preparation and characterisation of solid dispersions of tanshinone IIA, cryptotanshinone and total tanshinones. Asian J Pharm Sci. 2017;12:85–97. https://doi.org/10.1016/j.ajps.2016.08.004.

    Article  PubMed  Google Scholar 

  38. Chen ZQ, Liu Y, Zhao JH, Wang L, Feng NP. Improved oral bioavailability of poorly water-soluble indirubin by a supersaturatable self-microemulsifying drug delivery system. Int J Nanomedicine. 2012;7:1115–25. https://doi.org/10.2147/IJN.S28761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Apiwongngam J, Limwikrant W, Jintapattanakit A, Jaturanpinyo M. Enhanced supersaturation of chlortetracycline hydrochloride by amorphous solid dispersion. J Drug Deliv Sci Technol. 2018;47:417–26. https://doi.org/10.1016/j.jddst.2018.08.007.

    Article  CAS  Google Scholar 

  40. Tang J, Bao J, Shi X, Sheng X, Su W. Preparation, optimisation, and in vitro-in vivo evaluation of febuxostat ternary solid dispersion. J Microencapsul. 2018;35:454–66. https://doi.org/10.1080/02652048.2018.1526339.

    Article  CAS  PubMed  Google Scholar 

  41. Chhouk K, Wahyudiono, Kanda H, Kawasaki SI, Goto M. Micronization of curcumin with biodegradable polymer by supercritical anti-solvent using micro swirl mixer. Front Chem Sci Eng. 2017;12:184–93. https://doi.org/10.1007/s11705-017-1678-3.

    Article  CAS  Google Scholar 

  42. Yousaf AM, Kim DW, Kim DS, Kim JO, Youn YS, Cho KH, et al. Influence of polyvinylpyrrolidone quantity on the solubility, crystallinity and oral bioavailability of fenofibrate in solvent-evaporated microspheres. J Microencapsul. 2016;33:365–71. https://doi.org/10.1080/02652048.2016.1194906.

    Article  CAS  PubMed  Google Scholar 

  43. Shuai S, Yue S, Huang Q, Wang W, Yang J, Lan K, et al. Preparation, characterization and in vitro/vivo evaluation of tectorigenin solid dispersion with improved dissolution and bioavailability. Eur J Drug Metab Pharmacokinet. 2016;41:413–22. https://doi.org/10.1007/s13318-015-0265-6.

    Article  CAS  PubMed  Google Scholar 

  44. Puncochova K, Prajzlerova M, Beranek J, Stepanek F. The impact of polymeric excipients on the particle size of poorly soluble drugs after pH-induced precipitation. Eur J Pharm Sci. 2016;95:138–44. https://doi.org/10.1016/j.ejps.2016.08.028.

    Article  CAS  PubMed  Google Scholar 

  45. Li B, Konecke S, Harich K, Wegiel L, Taylor LS, Edgar KJ. Solid dispersion of quercetin in cellulose derivative matrices influences both solubility and stability. Carbohydr Polym. 2013;92:2033–40. https://doi.org/10.1016/j.carbpol.2012.11.073.

    Article  CAS  PubMed  Google Scholar 

  46. Tsai TH, Chou CJ, Lee TF, Wang LCH, Chen CF. Pharmacokinetic and pharmacodynamic studies of magnolol after oral administration in rats. Pharm Pharmacol Commun. 2011;2:191–3. https://doi.org/10.1111/j.2042-7158.1996.tb00592.x.

    Article  Google Scholar 

  47. Lin SP, Tsai SY, Lee Chao PD, Chen YC, Hou YC. Pharmacokinetics, bioavailability, and tissue distribution of magnolol following single and repeated dosing of magnolol to rats. Planta Med. 2011;77:1800–5. https://doi.org/10.1055/s-0030-1271159.

    Article  CAS  PubMed  Google Scholar 

  48. Delmas PD. Effects of raloxifene on bone mineral density, serum cholesterol concentrations, and uterine endometrium in postmenopausal women. N Engl J Med. 1997;337:1641–7. https://doi.org/10.1056/NEJM199712043372301.

    Article  CAS  PubMed  Google Scholar 

  49. Teeter JS, Meyerhoff RD. Environmental fate and chemistry of raloxifene hydrochloride. Environ Toxicol Chem. 2010;21:729–36. https://doi.org/10.1002/etc.5620210407.

    Article  Google Scholar 

  50. Fan W, Zhu W, Zhang X, Di L. The preparation of curcumin sustained-release solid dispersion by hot melt extrusion - optimization of the formulation. J Pharm Sci. 2020;109:1242–52. https://doi.org/10.1016/j.xphs.2019.11.019.

    Article  CAS  PubMed  Google Scholar 

  51. Chieng N, Rades T, Aaltonen J. An overview of recent studies on the analysis of pharmaceutical polymorphs. J Pharm Biomed Anal. 2011;55:618–44. https://doi.org/10.1016/j.jpba.2010.12.020.

    Article  CAS  PubMed  Google Scholar 

  52. Raina SA, Van Eerdenbrugh B, Alonzo DE, Mo H, Zhang GGZ, Gao Y, et al. Trends in the precipitation and crystallization behavior of supersaturated aqueous solutions of poorly water-soluble drugs assessed using synchrotron radiation. Pharm Sci. 2015;104:1981–92. https://doi.org/10.1002/jps.24423.

    Article  CAS  Google Scholar 

  53. Mistry P, Amponsah-Efah KK, Suryanarayanan R. Rapid assessment of the physical stability of amorphous solid dispersions. Cryst Growth Des. 2017;17:2478–85. https://doi.org/10.1021/acs.cgd.6b01901.

    Article  CAS  Google Scholar 

  54. Raghavan S, Trividic A, Davis A, Hadgraft J. Crystallization of hydrocortisone acetate: influence of polymers. Int J Pharm. 2001;212:213–21. https://doi.org/10.1016/S0378-5173(00)00610-4.

    Article  CAS  PubMed  Google Scholar 

  55. Simonelli A, Mehta S, Higuchi WI. Inhibition of sulfathiazole crystal growth by polyvinylpyrrolidone. J Pharm Sci. 1970;59:633–8. https://doi.org/10.1002/jps.2600590512.

    Article  CAS  PubMed  Google Scholar 

  56. Ilevbare GA, Liu H, Edgar KJ, Taylor LS. Understanding polymer properties important for crystal growth inhibition - impact of chemically diverse polymers on solution crystal growth of ritonavir. Cryst Growth Des. 2012;12:3133–43. https://doi.org/10.1021/cg300325p.

    Article  CAS  Google Scholar 

  57. Li J, Zhao J, Tao L, Wang J, Waknis V, Pan D, et al. The effect of polymeric excipients on the physical properties and performance of amorphous dispersions: part I, free volume and glass transition. Pharm Res. 2015;32:500–15. https://doi.org/10.1007/s11095-014-1478-0.

    Article  CAS  PubMed  Google Scholar 

  58. Oksanen CA, Zografi G. The relationship between the glass transition temperature and water vapor absorption by poly (vinylpyrrolidone). Pharm Res. 1990;7:654–7. https://doi.org/10.1023/A:1015834715152.

    Article  CAS  PubMed  Google Scholar 

  59. Andronis VV, Yoshioka M, Zografi G. Effects of sorbed water on the crystallization of indomethacin from the amorphous state. J Pharm Sci. 1997;86:346–51. https://doi.org/10.1021/js9602711.

    Article  CAS  PubMed  Google Scholar 

  60. Konno H, Taylor LS. Ability of different polymers to inhibit the crystallization of amorphous felodipine in the presence of moisture. Pharm Res. 2008;25:969–78. https://doi.org/10.1007/s11095-007-9331-3.

    Article  CAS  PubMed  Google Scholar 

  61. Sakai T, Hirai D, Kimura SI, Iwao Y, Itai S. Effects of tablet formulation and subsequent film coating on the supersaturated dissolution behavior of amorphous solid dispersions. Int J Pharm. 2018;540:171–7. https://doi.org/10.1016/j.ijpharm.2018.02.013.

    Article  CAS  PubMed  Google Scholar 

  62. Kumar GP, Phani AR, Prasad RG, Sanganal JS, Manali N, Gupta R, et al. Polyvinylpyrrolidone oral films of enrofloxacin: film characterization and drug release. Int J Pharm. 2014;471:146–52. https://doi.org/10.1016/j.ijpharm.2014.05.033.

    Article  CAS  PubMed  Google Scholar 

  63. David SRN, Rajabalaya R, Zhia ES. Development and in vitro evaluation of self-adhesive matrix-type transdermal delivery system of ondansetron hydrochloride. Trop J Pharm Res. 2015;14:211–8. https://doi.org/10.4314/tjpr.v14i2.4.

    Article  CAS  Google Scholar 

  64. Thakur RR, Tekko IA, Al-Shammari F, Ali AA, McCarthy H, Donnelly RF. Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery. Drug Deliv Transl Res. 2016;6:800–15. https://doi.org/10.1007/s13346-016-0332-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gao Y, Hou M, Yang R, Zhang L, Xu Z, Kang Y, Xue P. PEGDA/PVP microneedles with tailorable matrix constitutions for controllable transdermal drug delivery Macromolecular Materials and Engineering Macromol Mater Eng, 2018. DOI: https://doi.org/10.1002/mame.201800233.

  66. Khan S, Minhas MU, Tekko IA, Donnelly RF, Thakur RRS. Evaluation of microneedles-assisted in situ depot forming poloxamer gels for sustained transdermal drug delivery. Drug Deliv Transl Res. 2019;9:764–82. https://doi.org/10.1007/s13346-019-00617-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shim WS, Hwang YM, Park SG, Lee CK, Kang NG. Role of Polyvinylpyrrolidone in dissolving microneedle for efficient transdermal drug delivery: in vitro and clinical studies. Bull Kor Chem Soc. 2018;39:789–93. https://doi.org/10.1002/bkcs.11476.

    Article  CAS  Google Scholar 

  68. Dillon C, Hughes H, O'Reilly NJ, McLoughlin P. Formulation and characterisation of dissolving microneedles for the transdermal delivery of therapeutic peptides. Int J Pharm. 2017;526:125–36. https://doi.org/10.1016/j.ijpharm.2017.04.066.

    Article  CAS  PubMed  Google Scholar 

  69. Qu L, Zhou QT, Gengenbach T, Denman JA, Stewart PJ, Hapgood KP, et al. Investigation of the potential for direct compaction of a fine ibuprofen powder dry-coated with magnesium stearate. Drug Dev Ind Pharm. 2015;41:825–37. https://doi.org/10.3109/03639045.2014.908901.

    Article  CAS  PubMed  Google Scholar 

  70. W Gong W, Wang Y, Sun L, Yang J, Shan L, Yang M, Gao C. Development of itraconazole liquisolid compact: effect of polyvinylpyrrolidone on the dissolution properties. Curr Drug Deliv, 2016; 13: 452–461.

  71. Kim I, Kim H, Park K, Karki S, Khadka P, Jo K, et al. Viscoelastic interactions between polydeoxyribonucleotide and ophthalmic excipients. Drug Dev Ind Pharm. 2016;42:231–7. https://doi.org/10.3109/03639045.2015.1040417.

    Article  CAS  PubMed  Google Scholar 

  72. Khlibsuwan R, Pongjanyakul T. Particle agglomeration of chitosan-magnesium aluminum silicate nanocomposites for direct compression tablets. Int J Pharm. 2018;535:410–9. https://doi.org/10.1016/j.ijpharm.2017.11.030.

    Article  CAS  PubMed  Google Scholar 

  73. Liew KB, Tan YT, Peh KK. Effect of polymer, plasticizer and filler on orally disintegrating film. Drug Dev Ind Pharm. 2014;40:110–9. https://doi.org/10.3109/03639045.2012.749889.

    Article  CAS  PubMed  Google Scholar 

  74. Sheth NS, Mistry RB. Formulation and evaluation of transdermal patches and to study permeation enhancement effect of eugenol. J Pharm Sci. 2011;1:96–101.

    Google Scholar 

  75. Krishnaiah Y, Kumar MS, Raju V, Lakshmi M, Rama B. Penetration-enhancing effect of ethanolic solution of menthol on transdermal permeation of ondansetron hydrochloride across rat epidermis. Drug Deliv. 2008;15:227–34. https://doi.org/10.1080/10717540802006633.

    Article  CAS  PubMed  Google Scholar 

  76. Birchall JC. Microneedle array technology: the time is right but is the science ready? Expert Rev Med Devices. 2006;3:1–4. https://doi.org/10.1586/17434440.3.1.1.

    Article  PubMed  Google Scholar 

  77. Maaden KVD, Jiskoot W, Bouwstra J. Microneedle technologies for (trans) dermal drug and vaccine delivery. J Control Release. 2012;161:645–55. https://doi.org/10.1016/j.jconrel.2012.01.042.

    Article  CAS  PubMed  Google Scholar 

  78. Ma G, Wu C. Microneedle, bio-microneedle and bio-inspired microneedle: a review. J Control Release. 2017;251:11–23. https://doi.org/10.1016/j.jconrel.2017.02.011.

    Article  CAS  PubMed  Google Scholar 

  79. Vinayakumar K, Rajanna K, Dinesh N, Nayak M. Out-of-plane cup shaped stainless steel microneedle array for drug delivery, IEEE 11th annual international conference on nano/micro engineered and molecular systems (NEMS), Sendai, Japan, April, 2016.

  80. Li QY, Zhang JN, Chen BZ, Wang QL, Guo XD. A solid polymer microneedle patch pretreatment enhances the permeation of drug molecules into the skin. RSC Adv. 2017;7:15408–15. https://doi.org/10.1039/C6RA26759A.

    Article  CAS  Google Scholar 

  81. Dillon C, Hughes H, O'Reilly NJ, Allender CJ, Barrow DA, McLoughlin P. Dissolving microneedle based transdermal delivery of therapeutic peptide analogues. Int J Pharm. 2019;565:9–19. https://doi.org/10.1016/j.ijpharm.2019.04.075.

    Article  CAS  PubMed  Google Scholar 

  82. Cole G, McCaffrey J, Ali AA, McBride JW, McCrudden CM, Vincente-Perez EM, et al. Dissolving microneedles for DNA vaccination: improving functionality via polymer characterization and RALA complexation. Hum Vaccin Immunother. 2017;13:50–62. https://doi.org/10.1080/21645515.2016.1248008.

    Article  PubMed  Google Scholar 

  83. Pfeffer R, Dave RN, Wei D, Ramlakhan M. Synthesis of engineered particulates with tailored properties using dry particle coating. Powder Technol. 2001;117:40–67. https://doi.org/10.1016/S0032-5910(01)00314-X.

    Article  CAS  Google Scholar 

  84. Mullarney MP, Beach LE, Davé RN, Langdon BA, Polizzi M, Blackwood DO. Applying dry powder coatings to pharmaceutical powders using a comil for improving powder flow and bulk density. Powder Technol. 2011;212:397–402.

    Article  CAS  Google Scholar 

  85. Sun CC. Decoding powder tabletability: roles of particle adhesion and plasticity. J Adhes Sci Technol. 2011;25:483–99. https://doi.org/10.1163/016942410X525678.

    Article  CAS  Google Scholar 

  86. Mattsson S, Nyström C. Evaluation of critical binder properties affecting the compactibility of binary mixtures. Drug Dev Ind Pharm. 2001;27:181–94. https://doi.org/10.1081/ddc-100000236.

    Article  CAS  PubMed  Google Scholar 

  87. Symecko C, Rhodes CJ. Binder functionality in tabletted systems. Drug Dev Ind Pharm. 1995;21:1091–114.

    Article  CAS  Google Scholar 

  88. Rojas J, Aristizabal J, Henao M. Screening of several excipients for direct compression of tablets: a new perspective based on functional properties. J Basic Appl Pharm Sci. 2013;34:17–23.

    CAS  Google Scholar 

  89. Nokhodchi A, Aliakbar R, Desai S, Javadzadeh Y. Liquisolid compacts: the effect of cosolvent and HPMC on theophylline release. Colloids Surf., B, 2010; 79: 262–269. DOI: https://doi.org/10.1016/j.colsurfb.2010.04.008.

  90. Tiong N, Elkordy AA. Effects of liquisolid formulations on dissolution of naproxen. Eur J Pharm Biopharm. 2009;73:373–84. https://doi.org/10.1016/j.ejpb.2009.08.002.

    Article  CAS  PubMed  Google Scholar 

  91. Ni R, Muenster U, Zhao J, Zhang L, Becker-Pelster EM, Rosenbruch M, et al. Exploring polyvinylpyrrolidone in the engineering of large porous PLGA microparticles via single emulsion method with tunable sustained release in the lung: in vitro and in vivo characterization. J Control Release. 2017;249:11–22. https://doi.org/10.1016/j.jconrel.2017.01.023.

    Article  CAS  PubMed  Google Scholar 

  92. Li R, Yin T, Zhang Y, Gou J, He H, Tang X. Preparing of aspirin sustained-release granules by hot-melt granulation and micro-crystal coating. Drug Dev Ind Pharm. 2019;45:959–67. https://doi.org/10.1080/03639045.2019.1583756.

    Article  CAS  PubMed  Google Scholar 

  93. Zhang S, Meng X, Wang Z, Fan A, Wang G, Zhao Y, et al. Engineering hot-melt extruded solid dispersion for controlled release of hydrophilic drugs. Eur J Pharm Sci. 2017;100:109–15. https://doi.org/10.1016/j.ejps.2017.01.009.

    Article  CAS  PubMed  Google Scholar 

  94. Li X, Jiang Q, Du L, Wang C, Chi Q. In vitro and in vivo evaluation of novel osmotic pump tablets of isosorbide-5-mononitrate containing polyvinyl pyrrolidone (PVP) for controlled release. Pharmazie. 2012;67:695–700. https://doi.org/10.1691/ph.2012.1153.

    Article  CAS  PubMed  Google Scholar 

  95. Garekani HA, Nokhodchi A, Rayeni MA, Sadeghi F. Preparation and characterization and release properties of Eudragit RS based ibuprofen pellets prepared by extrusion spheronization: effect of binder type and concentration. Drug Dev Ind Pharm. 2013;39(8):1238–46. https://doi.org/10.3109/03639045.2012.707207.

    Article  CAS  PubMed  Google Scholar 

  96. Meeus J, Scurr DJ, Amssoms K, Wuyts K, Annaert P, Davies MC, et al. In vivo evaluation of different formulation strategies for sustained release injectables of a poorly soluble HIV protease inhibitor. J Control Release. 2015;199:1–9. https://doi.org/10.1016/j.jconrel.2014.11.020.

    Article  CAS  PubMed  Google Scholar 

  97. Ouazib F, Bouslah Mokhnachi N, Haddadine N, Barille R. Role of polymer/polymer and polymer/drug specific interactions in drug delivery systems. J Polym Eng. 2019;39:534–44.

    Article  CAS  Google Scholar 

  98. Yusif RM, Hashim IIA, Mohamed EA, El Rakhawy MM. Investigation and evaluation of an in situ interpolymer complex of carbopol with polyvinylpyrrolidone as a matrix for gastroretentive tablets of ranitidine hydrochloride. Chem Pharm Bull. 2016;64:42–51. https://doi.org/10.1248/cpb.c15-00620.

    Article  Google Scholar 

  99. El Maghraby GM, Elsergany RN. Fast disintegrating tablets of nisoldipine for intra-oral administration. Pharm Dev Technol. 2014;19:641–50. https://doi.org/10.3109/10837450.2013.813543.

    Article  CAS  PubMed  Google Scholar 

  100. Zhang X, Xu D, Jin X, Liu G, Liang S, Wang H, et al. Nanocapsules of therapeutic proteins with enhanced stability and long blood circulation for hyperuricemia management. J Control Release. 2017;255:54–61.

    Article  Google Scholar 

  101. El-Shenawy AA, Ahmed MM, Mansour HF, Abd El Rasoul S. Torsemide Fast dissolving tablets: development, optimization using Box-Bhenken design and response surface methodology, in vitro characterization, and pharmacokinetic assessment. AAPS PharmSciTech. 2017;18:2168–79. https://doi.org/10.1208/s12249-016-0697-6.

    Article  CAS  PubMed  Google Scholar 

  102. Ford JL. The current status of solid dispersions. Pharm Acta Helv. 1986;61:69–88.

    CAS  PubMed  Google Scholar 

  103. Meeus J, Chen X, Scurr DJ, Ciarnelli V, Amssoms K, Roberts CJ, et al. Nanoscale surface characterization and miscibility study of a spray-dried injectable polymeric matrix consisting of poly (lactic-co-glycolic acid) and polyvinylpyrrolidone. J Pharm Sci. 2012;101:3473–85. https://doi.org/10.1002/jps.23131.

    Article  CAS  PubMed  Google Scholar 

  104. Meeus J, Scurr DJ, Amssoms K, Davies MC, Roberts CJ, Van den Mooter G. Surface characteristics of spray-dried microspheres consisting of PLGA and PVP: relating the influence of heat and humidity to the thermal characteristics of these polymers. Mol Pharm. 2013;10:3213–24. https://doi.org/10.1021/mp400263d.

    Article  CAS  PubMed  Google Scholar 

  105. Yusif RM, Hashim IIA, Mohamed EA, EI Rakhawy MM. Investigation and evaluation of an in situ interpolymer complex of carbopol with polyvinylpyrrolidone as a matrix for gastroretentive tablets of ranitidine hydrochloride. Chem Pharm Bull. 2016;64:42–51. https://doi.org/10.1248/cpb.c15-00620.

    Article  Google Scholar 

  106. Park H, Robinson JR. Mechanisms of mucoadhesion of poly (acrylic acid) hydrogels. Pharm Res. 1987;4:457–64. https://doi.org/10.1023/A:1016467219657.

    Article  CAS  PubMed  Google Scholar 

  107. Kockisch S, Rees GD, Young SA, Tsibouklis J, Smart JD. Polymeric microspheres for drug delivery to the oral cavity: an in vitro evaluation of mucoadhesive potential. J Pharm Sci. 2003;92:1614–23. https://doi.org/10.1002/jps.10423.

    Article  CAS  PubMed  Google Scholar 

  108. Oechsner M, Keipert S. Polyacrylic acid/polyvinylpyrrolidone bipolymeric systems. I Rheological and mucoadhesive properties of formulations potentially useful for the treatment of dry-eye-syndrome. Eur J Pharm Biopharm. 1999;47:113–8. https://doi.org/10.1016/s0939-6411(98)00070-8.

    Article  CAS  PubMed  Google Scholar 

  109. Nag OK, Awasthi V. Surface engineering of liposomes for stealth behavior. Pharmaceutics. 2013;5(4):542–69.

    Article  CAS  Google Scholar 

  110. Salmaso S, Caliceti P. Stealth properties to improve therapeutic efficacy of drug nanocarriers. J Drug Delivery. 2013. https://doi.org/10.1155/2013/374252.

  111. Markiewski MM, Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD. Complement and coagulation: strangers or partners in crime? Trends Immunol. 2007;28:184–92. https://doi.org/10.1016/j.it.2007.02.006.

    Article  CAS  PubMed  Google Scholar 

  112. Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD. The role of complement in biomaterial-induced inflammation. Mol Immunol. 2007;44:82–94. https://doi.org/10.1016/j.molimm.2006.06.020.

    Article  CAS  PubMed  Google Scholar 

  113. Molineux P. Water soluble synthetic polymers; properties and behavior. London: CRC Press; 1983.

    Google Scholar 

  114. Torchilin VP, Shtilman MI, Trubetskoy VS, Whiteman K, Milstein AM. Amphiphilic vinyl polymers effectively prolong liposome circulation time in vivo. BBA - Biomembranes. 1994;1195:181–4. https://doi.org/10.1016/0005-2736(94)90025-6.

    Article  CAS  PubMed  Google Scholar 

  115. Pang SNJ. Final report on the safety assessment of polyethylene glycols (PEGs)-6,-8,-32,-75,-150,-14M,-20M. J Am Coll Toxicol. 1993;12:429–57. https://doi.org/10.1016/1056-8719(93)90014-6.

    Article  Google Scholar 

  116. Yamaoka T, Tabata Y, Ikada Y. Distribution and tissue uptake of poly (ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sci. 1994;83:601–6. https://doi.org/10.1002/jps.2600830432.

    Article  CAS  PubMed  Google Scholar 

  117. Zalipsky S. Chemistry of polyethylene glycol conjugates with biologically active molecules. Adv Drug Deliv Rev. 1995;16:157–82. https://doi.org/10.1016/0169-409X(95)00023-Z.

    Article  CAS  Google Scholar 

  118. Zhao Y, Wang L, Yan M, Ma Y, Zang G, She Z, et al. Repeated injection of PEGylated solid lipid nanoparticles induces accelerated blood clearance in mice and beagles. Int J Nanomedicine. 2012;7:2891–900.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Ishida T, Ichihara M, Wang X, Yamamoto K, Kimura J, Majima E, et al. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Control Release. 2006;112:15–25. https://doi.org/10.1016/j.jconrel.2006.01.005.

    Article  CAS  PubMed  Google Scholar 

  120. Kierstead PH, Okochi H, Venditto VJ, Chuong TC, Kivimae S, Frechet JMJ, et al. The effect of polymer backbone chemistry on the induction of the accelerated blood clearance in polymer modified liposomes. J Control Release. 2015;213:1–9. https://doi.org/10.1016/j.jconrel.2015.06.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Evans E, Klingenberg D, Rawicz W, Szoka F. Interactions between polymer-grafted membranes in concentrated solutions of free polymer. Langmuir. 1996;12:3031–7.

    Article  CAS  Google Scholar 

  122. Jeon S, Lee J, Andrade J, De Gennes P. Protein—surface interactions in the presence of polyethylene oxide: I. Simplified theory. J Colloid Interface Sci. 1991;142:149–58. https://doi.org/10.1016/0021-9797(91)90043-8.

    Article  CAS  Google Scholar 

  123. Carrstensen H, Mueller RH, Müller BW. Particle size, surface hydrophobicity and interaction with serum of parenteral fat emulsions and model drug carriers as parameters related to RES uptake. Clin Nutr. 1992;11:289–97. https://doi.org/10.1016/0261-5614(92)90006-C.

    Article  CAS  PubMed  Google Scholar 

  124. Liu Y, Luo X, Xu X, Gao N, Liu X. Preparation, characterization and in vivo pharmacokinetic study of PVP-modified oleanolic acid liposomes. Int J Pharm. 2017;517:1–7. https://doi.org/10.1016/j.ijpharm.2016.11.056.

    Article  CAS  PubMed  Google Scholar 

  125. Torchilin VP, Levchenko TS, Whiteman KR, Yaroslavov AA, Tsatsakis AM, Rizos AK, et al. Amphiphilic poly-N-vinylpyrrolidones: synthesis, properties and liposome surface modification. Biomaterials. 2001;22:3035–44. https://doi.org/10.1016/S0142-9612(01)00050-3.

    Article  CAS  PubMed  Google Scholar 

  126. Vasir JK, Tambwekar K, Garg S. Bioadhesive microspheres as a controlled drug delivery system. Int J Pharm. 2003;255:13–32. https://doi.org/10.1016/s0378-5173(03)00087-5.

    Article  CAS  PubMed  Google Scholar 

  127. Asbahr ACC, Franco L, Barison A, Silva CW, Ferraz HG, Rodrigues LN. Binary and ternary inclusion complexes of finasteride in HPβCD and polymers: preparation and characterization. Med Chem. 2009;17:2718–23. https://doi.org/10.1016/j.bmc.2009.02.044.

    Article  CAS  Google Scholar 

  128. Srivalli KMR, Mishra B. Improved aqueous solubility and antihypercholesterolemic activity of ezetimibe on formulating with hydroxypropyl-β-cyclodextrin and hydrophilic auxiliary substances. AAPS PharmSciTech. 2015;17:272–83. https://doi.org/10.1208/s12249-015-0344-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Taupitz T, Dressman JB, Buchanan CM, Klein S. Cyclodextrin-water soluble polymer ternary complexes enhance the solubility and dissolution behaviour of poorly soluble drugs. Case example: itraconazole. Eur J Pharm Biopharm. 2013;83:378–87. https://doi.org/10.1016/j.ejpb.2012.11.003.

    Article  CAS  PubMed  Google Scholar 

  130. Soliman KA, Ibrahim HK, Ghorab MM. Effect of different polymers on avanafil-beta-cyclodextrin inclusion complex: in vitro and in vivo evaluation. Int J Pharm. 2016;512:168–77.

    Article  CAS  Google Scholar 

  131. Patel AR, Vavia PR. Effect of hydrophilic polymer on solubilization of fenofibrate by cyclodextrin complexation. J Incl Phenom Macrocycl Chem. 2006;56:247–51. https://doi.org/10.1007/s10847-006-9091-4.

    Article  CAS  Google Scholar 

  132. Hassan M, Shanbaz N, Khan SI, Khan I. Formulation and evaluation of taste masked orally disintegrating tablets of itopride HCl using hydrophillic polymers as drug carrier. Lat Am J Pharm. 2015;34:1364–72.

    Google Scholar 

  133. Abdelbary G, Eouani C, Prinderre P, Joachim J, Reynier J, Piccerelle PH. Determination of the in vitro disintegration profile of rapidly disintegrating tablets and correlation with oral disintegration. Int J Pharm. 2005;292:29–41. https://doi.org/10.1016/j.ijpharm.2004.08.019.

    Article  CAS  PubMed  Google Scholar 

  134. Robson H, Craig D, Deutsch D. An investigation into the release of cefuroxime axetil from taste-masked stearic acid microspheres. III The use of DSC and HSDSC as means of characterising the interaction of the microspheres with buffered media. Int J Pharm. 2000;201:211–9. https://doi.org/10.1016/S0378-5173(00)00416-6.

    Article  CAS  PubMed  Google Scholar 

  135. Bonferoni MC, Rossi S, Ferrari F, Bertoni M, Sinistri R. Characterization of three hydroxypropylmethylcellulose substitution types: rheological properties and dissolution behaviour. Eur J Pharm Biopharm. 1995;41:242–6.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the Natural Science Foundation of Shanghai (18ZR1439800, 18ZR1436600), Three-year Action Plan for the Development of Traditional Chinese Medicine of Shanghai Municipal Health Planning Commission (ZY(2018-2020)-CCCX-2001-03), and the Clinical Research Fund of Shanghai Municipal Health Commission (201940296).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Wu or Xiao Lin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Hong, Y., Shen, L. et al. Multifunctional Role of Polyvinylpyrrolidone in Pharmaceutical Formulations. AAPS PharmSciTech 22, 34 (2021). https://doi.org/10.1208/s12249-020-01909-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01909-4

KEY WORDS

Navigation