Skip to main content

Advertisement

Log in

Improved Oral Bioavailability and Hypolipidemic Effect of Syringic Acid via a Self-microemulsifying Drug Delivery System

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This study aimed to develop a self-microemulsifying drug delivery system (SMEDDS) to enhance the solubility, oral bioavailability, and hypolipidemic effects of syringic acid (SA), a bioactive and poorly-soluble polyphenol. Based on the response surface methodology-central composite design (RSM-CCD), an optimum formulation of SA-SMEDDS, consisting of ethyl oleate (oil, 12.30%), Cremophor-EL (surfactant, 66.25%), 1,2-propanediol (cosurfactant, 21.44%), and drug loading (50 mg/g), was obtained. The droplets of SA-SMEDDS were nanosized (16.38 ± 0.12 nm), spherically shaped, and homogeneously distributed (PDI = 0.058 ± 0.013) nanoparticles with high encapsulation efficiency (98.04 ± 1.39%) and stability. In vitro release study demonstrated a prolonged and controlled release of SA from SMEDDS. In vitro cell studies signified that SA-SMEDDS droplets substantially promoted cellular internalization. In comparison with the SA suspension, SA-SMEDDS showed significant prolonged Tmax, t1/2, and MRT after oral administration. Also, SA-SMEDDS exhibited a delayed in vivo elimination, increased bioavailability (2.1-fold), and enhanced liver accumulation. Furthermore, SA-SMEDDS demonstrated significant improvement in alleviating serum lipid profiles and hepatic steatosis in high-fat diet-induced hyperlipidemia in mice. Collectively, SMEDDS demonstrated potential as a nanosystem for the oral delivery of SA with enhanced bioavailability and hypolipidemic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shi F, Li JL, Yang LQ, Hou GH, Ye M. Hypolipidemic effect and protection ability of liver-kidney functions of melanin from Lachnum YM226 in high-fat diet fed mice. Food Funct. 2018;9(2):880–9.

    Article  CAS  PubMed  Google Scholar 

  2. Ratziu V, Goodman Z, Sanyal A. Current efforts and trends in the treatment of NASH. J Hepatol. 2015;62:S65–75.

    Article  CAS  PubMed  Google Scholar 

  3. Cetkovic Z, Cvijic S, Vasiljevic D. In vitro/in silico approach in the development of simvastatin-loaded self-microemulsifying drug delivery systems. Drug Dev Ind Pharm. 2018;44(5):849–60.

    Article  CAS  PubMed  Google Scholar 

  4. Knapik-Czajka M, Gozdzialska A, Jaskiewicz J. Adverse effect of fenofibrate on branched-chain alpha-ketoacid dehydrogenase complex in rat’s liver. Toxicology. 2009;266(1–3):1–5.

    Article  CAS  PubMed  Google Scholar 

  5. Yu Q, Ma X, Wang Y, et al. Dietary cholesterol exacerbates statin-induced hepatic toxicity in syrian golden hamsters and in patients in an observational cohort study. Cardiovasc Drugs Ther. (2020). https://doi.org/10.1007/s10557-020-07060-3.

  6. Crisan E, Patil VK. Neuromuscular complications of statin therapy. Curr Neurol Neurosci Rep. 2020;20(10):47.

  7. Attridge RL, Frei CR, Ryan L, Koeller J, Linn WD. Fenofibrate-associated nephrotoxicity: a review of current evidence. Am J Health Syst Pharm. 2013;70(14):1219–25.

    Article  CAS  PubMed  Google Scholar 

  8. Liu YT, Sun J, Rao SQ, Su YJ, Yang YJ. Antihyperglycemic, antihyperlipidemic and antioxidant activities of polysaccharides from Catathelasma ventricosum in streptozotocin-induced diabetic mice. Food Chem Toxicol. 2013;57:39–45.

    Article  CAS  PubMed  Google Scholar 

  9. Deng WW, Yang X, Zhu Y, Yu JN, Xu XM. Structural characterization and hypolipidemic activities of purified stigma maydis polysaccharides. Food Sci Nutr. 2019;7(8):2674–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Omari-Siaw E, Zhu Y, Wang HY, Peng W, Firempong CK, Wang YW, et al. Hypolipidemic potential of perillaldehyde-loaded self-nanoemulsifying delivery system in high-fat diet induced hyperlipidemic mice: formulation, in vitro and in vivo evaluation. Eur J Pharm Sci. 2016;85:112–22.

    Article  CAS  PubMed  Google Scholar 

  11. Cao J, Wang SC, Yao CW, Xu Z, Xu XM. Hypolipidemic effect of porphyran extracted from Pyropia yezoensis in ICR mice with high fatty diet. J Appl Phycol. 2016;28(2):1315–22.

    Article  CAS  Google Scholar 

  12. Feng YS, Zhu Y, Wan JY, Yang X, Firempong CK, Yu JN, et al. Enhanced oral bioavailability, reduced irritation and increased hypolipidemic activity of self-assembled capsaicin prodrug nanoparticles. J Funct Foods. 2018;44:137–45.

    Article  CAS  Google Scholar 

  13. Cheemanapalli S, Mopuri R, Golla R, Anuradha CM, Chitta SK. Syringic acid (SA) - a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed Pharmacother. 2018;108:547–57.

    Article  Google Scholar 

  14. Song LX, Wang HM, Xu P, Yang Y, Zhang ZQ. Experimental and theoretical studies on the inclusion complexation of syringic acid with alpha-, beta-, gamma- and heptakis(2,6-di-O-methyl)-beta-cyclodextrin. Chem Pharm Bull. 2008;56(4):468–74.

    Article  CAS  Google Scholar 

  15. Brauer GM, Stansbury JW. Materials science cements containing syringic acid esters- o-Ethoxybenzoic acid and zinc oxide. J Dent Res. 1984;63(2):137–40.

    Article  CAS  PubMed  Google Scholar 

  16. Cotoras M, Vivanco H, Melo R, Aguirre M, Silva E, Mendoza L. In vitro and in vivo evaluation of the antioxidant and prooxidant activity of phenolic compounds obtained from grape (Vitis vinifera) pomace. Molecules. 2014;19(12):21154–67.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shi C, Sun Y, Zheng ZW, Zhang XR, Song KK, Jia ZY, et al. Antimicrobial activity of syringic acid against Cronobacter sakazakii and its effect on cell membrane. Food Chem. 2016;197:100–6.

    Article  CAS  PubMed  Google Scholar 

  18. Cao Y, Zhang L, Sun S, Yi Z, Jiang X, Jia D. Neuroprotective effects of syringic acid against OGD/R-induced injury in cultured hippocampal neuronal cells. Int J Mol Med. 2016;38(2):567–73.

    Article  CAS  PubMed  Google Scholar 

  19. Shahzad S, Mateen S, Naeem SS, Akhtar K, Rizvi W, Moin S. Syringic acid protects from isoproterenol induced cardiotoxicity in rats. Eur J Pharmacol. 2019;849:135–45.

    Article  CAS  PubMed  Google Scholar 

  20. Abaza M-S, Al-Attiyah R, Bhardwaj R, Abbadi G, Koyippally M, Afzal M. Syringic acid from Tamarix aucheriana possesses antimitogenic and chemo-sensitizing activities in human colorectal cancer cells. Pharm Biol. 2013;51(9):1110–24.

    Article  CAS  PubMed  Google Scholar 

  21. S-l Y, Wang Z-h, H-f Y, Lee Y-j, M-c Y. Reversal of ethanol-induced hepatotoxicity by cinnamic and syringic acids in mice. Food Chem Toxicol. 2016;98:119–26.

    Article  Google Scholar 

  22. Ham JR, Lee HI, Choi RY, Sim MO, Seo KI, Lee MK. Anti-steatotic and anti-inflammatory roles of syringic acid in high-fat diet-induced obese mice. Food Funct. 2016;7(2):689–97.

    Article  CAS  PubMed  Google Scholar 

  23. Ren J, Yang MJ, Xu FY, Chen JW, Ma SL. Acceleration of wound healing activity with syringic acid in streptozotocin induced diabetic rats. Life Sci. 2019;233:12.

    Article  Google Scholar 

  24. Noubigh A, Abderrabba M, Provost E. Temperature and salt addition effects on the solubility behaviour of some phenolic compounds in water. J Chem Thermodyn. 2007;39(2):297–303.

    Article  CAS  Google Scholar 

  25. Parmar A, Singh K, Bahadur A, Marangoni G, Bahadur P. Interaction and solubilization of some phenolic antioxidants in Pluronic (R) micelles. Colloids Surf B Biointerfaces. 2011;86(2):319–26.

    Article  CAS  PubMed  Google Scholar 

  26. Sun CY, Yuan YY, Omari-Siaw E, Tong SS, Zhu Y, Wang QL, et al. An efficient HPLC method for determination of syringic acid liposome in rats plasma and mice tissue: pharmacokinetic and biodistribution application. Curr Pharm Anal. 2018;14(1):41–52.

    CAS  Google Scholar 

  27. Liu YK, Sun CY, Li WJ, Adu-Frimpong M, Wang QL, Yu JN, et al. Preparation and characterization of syringic acid-loaded TPGS liposome with enhanced oral bioavailability and in vivo antioxidant efficiency. AAPS PharmSciTech. 2019;20(3):10.

    Article  Google Scholar 

  28. Sun C, Li W, Ma P, Li Y, Zhu Y, Zhang H, et al. Development of TPGS/F127/F68 mixed polymeric micelles: enhanced oral bioavailability and hepatoprotection of syringic acid against carbon tetrachloride-induced hepatotoxicity. Food Chem Toxicol. 2020;137:111126.

    Article  CAS  PubMed  Google Scholar 

  29. Sunazuka Y, Ueda K, Higashi K, Tanaka Y, Moribe K. Combined effects of the drug distribution and mucus diffusion properties of self-microemulsifying drug delivery systems on the oral absorption of fenofibrate. Int J Pharm. 2018;546(1–2):263–71.

    Article  CAS  PubMed  Google Scholar 

  30. Li XM, Ge M, Lu MZ, Jin YH, Quan DQ. The in vitro and in vivo evaluation of fenofibrate with a self-microemulsifying formulation. Curr Drug Deliv. 2015;12(3):308–13.

    Article  CAS  Google Scholar 

  31. Kang BK, Lee JS, Chon SK, Jeong SY, Yuk SH, Khang G, et al. Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. Int J Pharm. 2004;274(1–2):65–73.

    Article  CAS  PubMed  Google Scholar 

  32. Neslihan Gursoy R, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58(3):173–82.

    Article  CAS  PubMed  Google Scholar 

  33. Charman SA, Charman WN, Rogge MC, Wilson TD, Dutko FJ, Pouton CW. Self-emulsifying drug delivery systems: formulation and biopharmaceutic evaluation of an investigational lipophilic compound. Pharm Res. 1992;9(1):87–93.

    Article  CAS  PubMed  Google Scholar 

  34. Wang HY, Li Q, Deng WW, Omari-siaw E, Wang QL, Wang SC, et al. Self-nanoemulsifying drug delivery system of trans-cinnamic acid: formulation development and pharmacodynamic evaluation in alloxan-induced type 2 diabetic rat model. Drug Dev Res. 2015;76(2):82–93.

    Article  CAS  PubMed  Google Scholar 

  35. Xu Y, Wang QL, Feng YS, Firempong CK, Zhu Y, Omari-Siaw E, et al. Enhanced oral bioavailability of 6 -Gingerol-SMEDDS: preparation, in vitro and in vivo evaluation. J Funct Foods. 2016;27:703–10.

    Article  Google Scholar 

  36. Zhang KY, Wang QL, Yang QX, Wei QY, Man N, Adu-Frimpong M, et al. Enhancement of oral bioavailability and anti-hyperuricemic activity of isoliquiritigenin via self-microemulsifying drug delivery system. AAPS PharmSciTech. 2019;20(5):11.

    Article  Google Scholar 

  37. Zhu Y, Xu W, Zhang JJ, Liao YW, Firempong CK, Adu-Frimpong M, et al. Self-microemulsifying drug delivery system for improved oral delivery of limonene: preparation, characterization, in vitro and in vivo evaluation. AAPS PharmSciTech. 2019;20(4):11.

    Article  Google Scholar 

  38. Man N, Wang QL, Li HH, Adu-Frimpong M, Sun CY, Zhang KY, et al. Improved oral bioavailability of myricitrin by liquid self-microemulsifying drug delivery systems. J Drug Deliv Sci Technol. 2019;52:597–606.

    Article  CAS  Google Scholar 

  39. Tandel H, Shah D, Vanza J, Misra A. Lipid based formulation approach for BCS class-II drug: modafinil in the treatment of ADHD. J Drug Deliv Sci Technol. 2017;37:166–83.

    Article  CAS  Google Scholar 

  40. Yeom DW, Chae BR, Son HY, Kim JH, Chae JS, Song SH, et al. Enhanced oral bioavailability of valsartan using a polymer-based supersaturable selfmicroemulsifying drug delivery system. Int J Nanomedicine. 2017;12:3533–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tung NT, Tran CS, Pham TMH, Nguyen HA, Nguyen TL, Chi SC, et al. Development of solidified self-microemulsifying drug delivery systems containing L-tetrahydropalmatine: design of experiment approach and bioavailability comparison. Int J Pharm. 2018;537(1–2):9–21.

    Article  CAS  PubMed  Google Scholar 

  42. Yang QX, Wang QL, Feng YS, Wei QY, Sun CY, Firempong CK, et al. Anti-hyperuricemic property of 6-shogaol via self-micro emulsifying drug delivery system in model rats: formulation design, in vitro and in vivo evaluation. Drug Dev Ind Pharm. 2019;45(8):1265–76.

    Article  CAS  PubMed  Google Scholar 

  43. Khoo S-M, Humberstone AJ, Porter CJH, Edwards GA, Charman WN. Formulation design and bioavailability assessment of lipidic self-emulsifying formulations of halofantrine. Int J Pharm. 1998;167(1):155–64.

    Article  CAS  Google Scholar 

  44. Pramanik S, Thakkar H. Development of solid self-microemulsifying system of tizanidine hydrochloride for oral bioavailability enhancement: in vitro and in vivo evaluation. AAPS PharmSciTech. 2020;21(5):11.

    Article  Google Scholar 

  45. Dhumal DM, Akamanchi KG. Self-microemulsifying drug delivery system for camptothecin using new bicephalous heterolipid with tertiary-amine as branching element. Int J Pharm. 2018;541(1–2):48–55.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang Y, Huo MR, Zhou JP, Zou AF, Li WZ, Yao CL, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263–71.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tchernof A, Despres JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93(1):359–404.

    Article  CAS  PubMed  Google Scholar 

  48. Hauss DJ. Oral lipid-based formulations. Adv Drug Deliv Rev. 2007;59(7):667–76.

    Article  CAS  PubMed  Google Scholar 

  49. Thipparaboina R, Mittapalli S, Thatikonda S, Nangia A, Naidu VGM, Shastri NR. Syringic acid: structural elucidation and co-crystallization. Cryst Growth Des. 2016;16(8):4679–87.

    Article  CAS  Google Scholar 

  50. Pol A, Patel P, Hegde D. Peppermint oil based drug delivery system of aceclofenac with improved anti-inflammatory activity and reduced ulcerogenecity. Int J Pharm Biosci Technol. 2013;1:2321–969.

    Google Scholar 

  51. Gupta S, Chavhan S, Sawant KK. Self-nanoemulsifying drug delivery system for adefovir dipivoxil: design, characterization, in vitro and ex vivo evaluation. Colloids Surf A - Physicochem Eng Asp. 2011;392(1):145–55.

    Article  CAS  Google Scholar 

  52. Nasr A, Gardouh A, Ghorab M. Novel solid self-Nanoemulsifying drug delivery system (S-SNEDDS) for oral delivery of olmesartan medoxomil: design, formulation, pharmacokinetic and bioavailability evaluation. Pharmaceutics. 2016;8(3):29.

    Article  CAS  Google Scholar 

  53. Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (London). 2016;11(6):673–92.

    Article  CAS  Google Scholar 

  54. Thanitwatthanasak S, Sagis LMC, Chitprasert P. Pluronic F127/Pluronic P123/vitamin E TPGS mixed micelles for oral delivery of mangiferin and quercetin: mixture-design optimization, micellization, and solubilization behavior. J Mol Liq. 2019;274:223–38.

    Article  CAS  Google Scholar 

  55. Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems - a review (part 1). Trop J Pharm Res. 2013;12(2):255–64.

    Google Scholar 

  56. Kakumanu S, Tagne JB, Wilson TA, Nicolosi RJ. A nanoemulsion formulation of dacarbazine reduces tumor size in a xenograft mouse epidermoid carcinoma model compared to dacarbazine suspension. Nanomedicine. 2011;7(3):277–83.

    Article  CAS  PubMed  Google Scholar 

  57. Choudhury H, Gorain B, Karmakar S, Biswas E, Dey G, Barik R, et al. Improvement of cellular uptake, in vitro antitumor activity and sustained release profile with increased bioavailability from a nanoemulsion platform. Int J Pharm. 2014;460(1):131–43.

    Article  CAS  PubMed  Google Scholar 

  58. Gao J, Ming J, He B, Fan Y, Gu Z, Zhang X. Preparation and characterization of novel polymeric micelles for 9-nitro-20(S)-camptothecin delivery. Eur J Pharm Sci. 2008;34(2):85–93.

    Article  CAS  PubMed  Google Scholar 

  59. Papadopoulou V, Kosmidis K, Vlachou M, Macheras P. On the use of the Weibull function for the discernment of drug release mechanisms. Int J Pharm. 2006;309(1):44–50.

    Article  CAS  PubMed  Google Scholar 

  60. Seljak KB, Ilic IG, Gasperlin M, Pobirk AZ. Self-microemulsifying tablets prepared by direct compression for improved resveratrol delivery. Int J Pharm. 2018;548(1):263–75.

    Article  Google Scholar 

  61. Araujo RS, Garcia GM, Vilela JMC, Andrade MS, Oliveira LAM, Kano EK, et al. Cloxacillin benzathine-loaded polymeric nanocapsules: physicochemical characterization, cell uptake, and intramammary antimicrobial effect. Mater Sci Eng C-Mater Biol Appl. 2019;104:10.

    Article  Google Scholar 

  62. Chen M-L. Lipid excipients and delivery systems for pharmaceutical development: a regulatory perspective. Adv Drug Deliv Rev. 2008;60(6):768–77.

    Article  CAS  PubMed  Google Scholar 

  63. Liu X, Huang N, Li H, Jin Q, Ji J. Surface and size effects on cell interaction of gold nanoparticles with both phagocytic and nonphagocytic cells. Langmuir. 2013;29(29):9138–48.

    Article  CAS  PubMed  Google Scholar 

  64. Tran P, Pyo YC, Kim DH, Lee SE, Kim JK, Park JS. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics. 2019;11(3):26.

    Article  Google Scholar 

  65. Huo T, Tao C, Zhang M, Liu Q, Lin B, Liu Z, et al. Preparation and comparison of tacrolimus-loaded solid dispersion and self-microemulsifying drug delivery system by in vitro/in vivo evaluation. Eur J Pharm Sci. 2018;114:74–83.

    Article  CAS  PubMed  Google Scholar 

  66. Chen J, Mao D, Yong Y, Li J, Wei H, Lu L. Hepatoprotective and hypolipidemic effects of water-soluble polysaccharidic extract of Pleurotus eryngii. Food Chem. 2012;130(3):687–94.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the University Ethics Committee for the kind guidance in the animal experiments.

Funding

This work was supported by the National Natural Science Foundation of China (Grant 81720108030, 81773695, 81803475, 81373371, and 31871810), National Key Research and Development Project of China (2018YFE0208600), China Postdoctoral Science Foundation, the financial support by Key Lab for Drug Delivery & Tissue Regeneration (SS2018004), Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangnan Yu or Ximing Xu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 26.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Li, W., Zhang, H. et al. Improved Oral Bioavailability and Hypolipidemic Effect of Syringic Acid via a Self-microemulsifying Drug Delivery System. AAPS PharmSciTech 22, 45 (2021). https://doi.org/10.1208/s12249-020-01901-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01901-y

KEY WORDS

Navigation