Skip to main content
Log in

Promising Antifungal Potential of Engineered Non-ionic Surfactant-Based Vesicles: In Vitro and In Vivo Studies

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Fungal keratitis (FK) is a corneal infection caused by different fungal species. It is treated by the topical application of natamycin (NAT). Nevertheless, this approach faces many limitations like toxic effects, frequent dosing, resistance, and patient discomfort. The present research reports the development of trimethyl chitosan (TMC) coated mucoadhesive cationic niosomes by a modified thin-film hydration method. TMC was synthesized using a one-step carbodiimide method and characterized by 1H-NMR and degree of quaternization (53.74 ± 1.06%). NAT, cholesterol (CHOL), span 60 (Sp60), and dicetyl phosphate (DCP) were used to prepare niosomes which were incubated with TMC to obtain mucoadhesive cationic NAT loaded niosomes (MCNNs). MCNNs showed a spherical shape with 1031.12 ± 14.18 nm size (PDI below 0.3) and 80.23 ± 5.28% entrapment efficiency. In vitro drug release studies showed gradual drug release from TMC coated niosomes as compared to the uncoated niosomes. MIC assay and disk diffusion assay revealed promising in vitro antifungal potential of MCNNs similar to the marketed formulation. For investigating in vivo performance, ocular retention and pharmacokinetics, ocular irritation, and ulcer healing studies were performed using the rabbit model. Mucoadhesive property and prolonged local drug release improved the safety and efficacy of NAT, suggesting that the developed niosomes could be an emerging system for effective treatment of fungal keratitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tuli SS. Fungal keratitis. Clin Ophthalmol. 2011;5:275–9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Garg P, Roy A, Roy S. Update on fungal keratitis. Curr Opin Ophthalmol. 2016;27(4):333–9.

    Article  PubMed  Google Scholar 

  3. Słowik M, Biernat MM, Urbaniak-Kujda D, Kapelko-Słowik K, Misiuk-Hojło M. Mycotic infections of the eye. Adv Clin Exp Med. 2015;24(6):1113–7.

    Article  PubMed  Google Scholar 

  4. Keenan JD, McLeod SD. Fungal keratitis. Ophthalmology E-Book. 2018;226.

  5. Gopinathan U, Sharma S, Garg P, Rao GN. Review of epidemiological features, microbiological diagnosis and treatment outcome of microbial keratitis: experience of over a decade. Indian J Ophthalmol. 2009;57(4):273–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Prajna VN, Prajna L, Muthiah S. Reply to comment on: Fungal keratitis: the Aravind experience. Indian J Ophthalmol. 2018;66(2):346–7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Iyer SA, Tuli SS, Wagoner RC. Fungal keratitis: emerging trends and treatment outcomes. Eye Contact Lens. 2006;32(6):267–71.

    Article  PubMed  Google Scholar 

  8. Gower EW, Keay LJ, Oechsler RA, Iovieno A, Alfonso EC, Jones DB, et al. Trends in fungal keratitis in the United States, 2001 to 2007. Ophthalmology. 2010;117(12):2263–7.

    Article  PubMed  Google Scholar 

  9. Mellado F, Rojas T, Cumsille C. Fungal keratitis: review of diagnosis and treatment. Arq Bras Oftalmol. 2013;76(1):52–6.

    Article  PubMed  Google Scholar 

  10. Wu H, Ong ZY, Liu S, Li Y, Wiradharma N, Yang YY, et al. Synthetic β-sheet forming peptide amphiphiles for treatment of fungal keratitis. Biomaterials. 2015;43:44–9.

    Article  CAS  PubMed  Google Scholar 

  11. Nielsen SE, Nielsen E, Julian HO, Lindegaard J, Højgaard K, Ivarsen A, et al. Incidence and clinical characteristics of fungal keratitis in a Danish population from 2000 to 2013. Acta Ophthalmol. 2015;93(1):54–8.

    Article  PubMed  Google Scholar 

  12. Austin A, Lietman T, Rose-Nussbaumer J. Update on the management of infectious keratitis. Ophthalmology. 2017;124(11):1678–89.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Arora R, Gupta D, Goyal J, Kaur R. Voriconazole versus natamycin as primary treatment in fungal corneal ulcers. Clin Exp Ophthalmol. 2011;39(5):434–40.

    Article  PubMed  Google Scholar 

  14. Sun CQ, Lalitha P, Prajna NV, Karpagam R, Geetha M, O’Brien KS, et al. Association between in vitro susceptibility to natamycin and voriconazole and clinical outcomes in fungal keratitis. Ophthalmology. 2014;121(8):1495–500.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular systems in ocular drug delivery: an overview. Int J Pharm. 2004;269(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  16. Paecharoenchai O, Niyomtham N, Leksantikul L, Ngawhirunpat T, Rojanarata T, Yingyongnarongkul BE, et al. Nonionic surfactant vesicles composed of novel spermine-derivative cationic lipids as an effective gene carrier in vitro. AAPS PharmSciTech. 2014;15(3):722–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jain A, Jain SK. Chapter 9 - Application potential of engineered liposomes in tumor targeting A2 - Grumezescu, Alexandru Mihai. Multifunctional systems for combined delivery, biosensing and diagnostics: Elsevier; 2017. p. 171–91.

  18. Abdelbary G, El-Gendy N. Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS PharmSciTech. 2008;9(3):740–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Abdelkader H, Wu Z, Al-Kassas R, Alany RG. Niosomes and discomes for ocular delivery of naltrexone hydrochloride: morphological, rheological, spreading properties and photo-protective effects. Int J Pharm. 2012;433(1–2):142–8.

    Article  CAS  PubMed  Google Scholar 

  20. Bishnoi M, Jain A, Singla Y, Shrivastava B. Sublingual delivery of chondroitin sulfate conjugated tapentadol loaded nanovesicles for the treatment of osteoarthritis. J Liposome Res. 2020;2:1–15.

    Google Scholar 

  21. Uchegbu IF, Vyas SP. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm. 1998;172(1–2):33–70.

    Article  CAS  Google Scholar 

  22. Sahoo RK, Biswas N, Guha A, Sahoo N, Kuotsu K. Nonionic surfactant vesicles in ocular delivery: innovative approaches and perspectives. Biomed Res Int. 2014;2014:263604.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jain A, Kumari R, Tiwari A, Verma A, Tripathi A, Shrivastava A, et al. Nanocarrier based advances in drug delivery to tumor: an overview. Curr Drug Targets. 2018;19(13):1498–518.

    Article  CAS  PubMed  Google Scholar 

  24. Khatol P, Saraf S, Jain A. Peroxisome proliferated activated receptors (PPARs): opportunities and challenges for ocular therapy. Crit Rev Ther Drug Carrier Syst. 2018;35(1):65–97.

    Article  PubMed  Google Scholar 

  25. Jain A, Jain SK. Environmentally responsive chitosan-based nanocarriers (CBNs). Handb Polym Pharm Technol Biodegrad Polym. 2015;3:105.

    CAS  Google Scholar 

  26. Wadhwa S, Paliwal R, Paliwal SR, Vyas SP. Chitosan and its role in ocular therapeutics. Mini-Rev Med Chem. 2009;9(14):1639–47.

    Article  CAS  PubMed  Google Scholar 

  27. Prajapati SK, Jain A, Jain A, Jain S. Biodegradable polymers and constructs: a novel approach in drug delivery. Eur Polym J. 2019;120:109191.

    Article  CAS  Google Scholar 

  28. De Britto D, Frederico FR, Garrido Assis OB. Optimization of N, N, N-trimethylchitosan synthesis by factorial design. Polym Int. 2011;60(6):910–5.

    Article  Google Scholar 

  29. Choi C, Nam J-P, Nah J-W. Application of chitosan and chitosan derivatives as biomaterials. J Ind Eng Chem. 2016;33:1–10.

    Article  CAS  Google Scholar 

  30. Moghassemi S, Parnian E, Hakamivala A, Darzianiazizi M, Vardanjani MM, Kashanian S, et al. Uptake and transport of insulin across intestinal membrane model using trimethyl chitosan coated insulin niosomes. Mater Sci Eng C. 2015;46:333–40.

    Article  CAS  Google Scholar 

  31. Zhang J, Wang S. Topical use of coenzyme Q10-loaded liposomes coated with trimethyl chitosan: tolerance, precorneal retention and anti-cataract effect. Int J Pharm. 2009;372(1–2):66–75.

    Article  CAS  PubMed  Google Scholar 

  32. Van der Merwe S, Verhoef J, Verheijden J, Kotzé A, Junginger H. Trimethylated chitosan as polymeric absorption enhancer for improved peroral delivery of peptide drugs. Eur J Pharm Biopharm. 2004;58(2):225–35.

    Article  Google Scholar 

  33. Shinde UA, Joshi PN, Jain DD, Singh K. Preparation and evaluation of N-trimethyl chitosan nanoparticles of flurbiprofen for ocular delivery. Curr Eye Res. 2019 (just-accepted).

  34. Thanou M, Florea BI, Langemeyer MW, Verhoef JC, Junginger HE. N-Trimethylated chitosan chloride (TMC) improves the intestinal permeation of the peptide drug buserelin in vitro (Caco-2 cells) and in vivo (rats). Pharm Res. 2000;17(1):27–31.

    Article  CAS  PubMed  Google Scholar 

  35. Le Dung P, Milas M, Rinaudo M, Desbrières J. Water soluble derivatives obtained by controlled chemical modifications of chitosan. Carbohydr Polym. 1994;24(3):209–14.

    Article  Google Scholar 

  36. Verma A, Sharma G, Jain A, Tiwari A, Saraf S, Panda PK, et al. Systematic optimization of cationic surface engineered mucoadhesive vesicles employing Design of Experiment (DoE): a preclinical investigation. Int J Biol Macromol. 2019;133:1142–55.

    Article  CAS  PubMed  Google Scholar 

  37. Boonyo W, Junginger HE, Waranuch N, Polnok A, Pitaksuteepong T. Preparation and characterization of particles from chitosan with different molecular weights and their trimethyl chitosan derivatives for nasal immunization. J Met Mater Miner. 2017;18(2).

  38. Cao J, Sun J, Wang X, Li X, Deng Y. N-Trimethyl chitosan-coated multivesicular liposomes for oxymatrine oral delivery. Drug Dev Ind Pharm. 2009;35(11):1339–47.

    Article  CAS  PubMed  Google Scholar 

  39. Sayin B, Somavarapu S, Li XW, Sesardic D, Senel S, Alpar OH. TMC-MCC (N-trimethyl chitosan-mono-N-carboxymethyl chitosan) nanocomplexes for mucosal delivery of vaccines. Eur J Pharm Sci. 2009;38(4):362–9.

    Article  CAS  PubMed  Google Scholar 

  40. Obeid MA, Gebril AM, Tate RJ, Mullen AB, Ferro VA. Comparison of the physical characteristics of monodisperse non-ionic surfactant vesicles (NISV) prepared using different manufacturing methods. Int J Pharm. 2017;521(1–2):54–60.

    Article  CAS  PubMed  Google Scholar 

  41. Baillie A, Florence A, Hume L, Muirhead G, Rogerson A. The preparation and properties of niosomes—non-ionic surfactant vesicles. J Pharm Pharmacol. 1985;37(12):863–8.

    Article  CAS  PubMed  Google Scholar 

  42. Azmin M, Florence A, Handjani-Vila R, Stuart J, Vanlerberghe G, Whittaker J. The effect of non-ionic surfactant vesicle (niosome) entrapment on the absorption and distribution of methotrexate in mice. J Pharm Pharmacol. 1985;37(4):237–42.

    Article  CAS  PubMed  Google Scholar 

  43. Udupa N, Chandraprakash K, Umadevi P, Pillai G. Formulation and evaluation of methotrexate niosomes. Drug Dev Ind Pharm. 1993;19(11):1331–42.

    Article  CAS  Google Scholar 

  44. Al-Mahallawi AM, Khowessah OM, Shoukri RA. Nano-transfersomal ciprofloxacin loaded vesicles for non-invasive trans-tympanic ototopical delivery: in-vitro optimization, ex-vivo permeation studies, and in-vivo assessment. Int J Pharm. 2014;472(1–2):304–14.

    Article  CAS  PubMed  Google Scholar 

  45. Khalil RM, Abdelbary GA, Basha M, Awad GEA, El-Hashemy HA. Enhancement of lomefloxacin Hcl ocular efficacy via niosomal encapsulation: in vitro characterization and in vivo evaluation. J Liposome Res. 2017;27(4):312–23.

    Article  CAS  PubMed  Google Scholar 

  46. Gao Y, Elder S. TEM study of TiO2 nanocrystals with different particle size and shape. Mater Lett. 2000;44(3–4):228–32.

    Article  CAS  Google Scholar 

  47. Muzzalupo R, Tavano L, La Mesa C. Alkyl glucopyranoside-based niosomes containing methotrexate for pharmaceutical applications: evaluation of physico-chemical and biological properties. Int J Pharm. 2013;458(1):224–9.

    Article  CAS  PubMed  Google Scholar 

  48. Thangabalan B, Kumar PV. Analytical method development and validation of natamycin in eye drop by RP-HPLC. Asian J Pharm Clin Res. 2013;6(1):134–5.

    CAS  Google Scholar 

  49. Bhatta RS, Chandasana H, Chhonker YS, Rathi C, Kumar D, Mitra K, et al. Mucoadhesive nanoparticles for prolonged ocular delivery of natamycin: in vitro and pharmacokinetics studies. Int J Pharm. 2012;432(1–2):105–12.

    Article  CAS  PubMed  Google Scholar 

  50. El-Badry M, Fetih G, Fathalla D, Shakeel F. Transdermal delivery of meloxicam using niosomal hydrogels: in vitro and pharmacodynamic evaluation. Pharm Dev Technol. 2015;20(7):820–6.

    Article  CAS  PubMed  Google Scholar 

  51. Xie L, Zhai H, Zhao J, Sun S, Shi W, Dong X. Antifungal susceptibility for common pathogens of fungal keratitis in Shandong Province, China. Am J Ophthalmol. 2008;146(2):260–5.

    Article  CAS  PubMed  Google Scholar 

  52. Pfaller MA, Burmeister L, Bartlett MS, Rinaldi MG. Multicenter evaluation of four methods of yeast inoculum preparation. J Clin Microbiol. 1988;26(8):1437–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Odds F. Laboratory tests for the activity of imidazole and triazole antifungal agents in vitro. Semin Dermatol. 1985;4:260–79.

    Google Scholar 

  54. Zhao X, Tong Y, Wang X, Zhang X, Chen S, Lu H. Comparison of the ocular penetration and pharmacokinetics between natamycin and voriconazole after topical instillation in rabbits. J Ocul Pharmacol Ther. 2018;34(6):460–7.

    Article  CAS  PubMed  Google Scholar 

  55. Patil A, Lakhani P, Majumdar S. Current perspectives on natamycin in ocular fungal infections. J Drug Deliv Sci Technol. 2017;41:206–12.

    Article  CAS  Google Scholar 

  56. Kreger BE, Craven DE, McCabe WR. Gram-negative bacteremia. IV. Re-evaluation of clinical features and treatment in 612 patients. Am J Med. 1980;68(3):344–55.

    Article  CAS  PubMed  Google Scholar 

  57. Malhotra S, Khare A, Grover K, Singh I, Pawar P. Design and evaluation of voriconazole eye drops for the treatment of fungal keratitis. J Pharm (Cairo). 2014;2014:490595.

    Google Scholar 

  58. Nielsen EI, Viberg A, Lowdin E, Cars O, Karlsson MO, Sandstrom M. Semimechanistic pharmacokinetic/pharmacodynamic model for assessment of activity of antibacterial agents from time-kill curve experiments. Antimicrob Agents Chemother. 2007;51(1):128–36.

    Article  CAS  PubMed  Google Scholar 

  59. Klepser ME, Ernst EJ, Lewis RE, Ernst ME, Pfaller MA. Influence of test conditions on antifungal time-kill curve results: proposal for standardized methods. Antimicrob Agents Chemother. 1998;42(5):1207–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tsuji BT, Yang JC, Forrest A, Kelchlin PA, Smith PF. In vitro pharmacodynamics of novel rifamycin ABI-0043 against Staphylococcus aureus. J Antimicrob Chemother. 2008;62(1):156–60.

    Article  CAS  PubMed  Google Scholar 

  61. Chandasana H, Prasad YD, Chhonker YS, Chaitanya TK, Mishra NN, Mitra K, et al. Corneal targeted nanoparticles for sustained natamycin delivery and their PK/PD indices: an approach to reduce dose and dosing frequency. Int J Pharm. 2014;477(1–2):317–25.

    Article  CAS  PubMed  Google Scholar 

  62. Bhosale R, Bhandwalkar O, Duduskar A, Jadhav R, Pawar P. Water soluble chitosan mediated voriconazole microemulsion as sustained carrier for ophthalmic application: in vitro/ex vivo/in vivo evaluations. Open Pharm Sci J. 2016;3(1).

  63. Wilhelmus KR. The Draize eye test. Surv Ophthalmol. 2001;45(6):493–515.

    Article  CAS  PubMed  Google Scholar 

  64. Hamman JH, Stander M, Kotze AF. Effect of the degree of quaternisation of N-trimethyl chitosan chloride on absorption enhancement: in vivo evaluation in rat nasal epithelia. Int J Pharm. 2002;232(1–2):235–42.

    Article  CAS  PubMed  Google Scholar 

  65. Gonnering R, Edelhauser HF, Van Horn DL, Durant W. The pH tolerance of rabbit and human corneal endothelium. Invest Ophthalmol Vis Sci. 1979;18(4):373–90.

    CAS  PubMed  Google Scholar 

  66. Üstündağ-Okur N, Gökçe EH, Bozbıyık DI, Eğrilmez S, Özer Ö, Ertan G. Preparation and in vitro–in vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis. Eur J Pharm Sci. 2014;63:204–15.

    Article  PubMed  Google Scholar 

  67. Jain A, Hurkat P, Jain SK. Development of liposomes using formulation by design: basics to recent advances. Chem Phys Lipids. 2019;224:104764.

    Article  CAS  PubMed  Google Scholar 

  68. Jain A, Jain SK. In vitro release kinetics model fitting of liposomes: an insight. Chem Phys Lipids. 2016;201:28–40.

    Article  CAS  Google Scholar 

  69. Aggarwal D, Kaur IP. Improved pharmacodynamics of timolol maleate from a mucoadhesive niosomal ophthalmic drug delivery system. Int J Pharm. 2005;290(1–2):155–9.

    Article  CAS  PubMed  Google Scholar 

  70. Balaguer MP, Fajardo P, Gartner H, Gomez-Estaca J, Gavara R, Almenar E, et al. Functional properties and antifungal activity of films based on gliadins containing cinnamaldehyde and natamycin. Int J Food Microbiol. 2014;173:62–71.

    Article  CAS  PubMed  Google Scholar 

  71. Balguri SP, Adelli GR, Janga KY, Bhagav P, Majumdar S. Ocular disposition of ciprofloxacin from topical, PEGylated nanostructured lipid carriers: effect of molecular weight and density of poly (ethylene) glycol. Int J Pharm. 2017;529(1–2):32–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to AKUMS Drugs & Pharmaceuticals Ltd. (Haridwar, UK, India) for providing the gift sample of natamycin. We are also thankful to PURSE phase II of DST and SIC of Dr Harisingh Gour University, Sagar MP India for providing the instrumentation facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. Jain.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 4295 kb)

ESM 2

(PDF 441 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A., Jain, A., Tiwari, A. et al. Promising Antifungal Potential of Engineered Non-ionic Surfactant-Based Vesicles: In Vitro and In Vivo Studies. AAPS PharmSciTech 22, 19 (2021). https://doi.org/10.1208/s12249-020-01900-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01900-z

KEY WORDS

Navigation