Skip to main content

Development of a Pediatric Mini-Tablet Formulation for Expedited Preclinical Studies


Multiple considerations are essential to address the main challenges of dose flexibility and patient adherence in pediatric drug development, particularly for oncology. Mini-tablets, 2 mm in diameter, were manufactured using a rotary tablet press at a set weight and compression force level. The physical characteristics were consistent for mini-tablets throughout multiple batches. Polymeric amorphous solid dispersion (ASD) was used as a solubility enhancing technique to increase solubility and exposure of lapatinib. The effects of the polymeric excipient and disintegrant on drug release properties were investigated. While having a lower apparent solubility and shorter storage stability, hydroxypropyl methylcellulose E3 (HPMCE3) formulation provided a higher percentage of drug release compared to hydroxypropyl methylcellulose phthalate (HPMCP). The intermolecular interaction within the ASD system plays a role in the level of apparent solubility, physical stability, and concentration of free drug available in an aqueous environment. Juvenile porcine models at two different weight groups (10 and 20 kg) were used to obtain the pharmacokinetic parameters of lapatinib. While the dose-normalized exposure of drug was found to be lower in the pig study, the dose flexibility of mini-tablets enabled a constant dose level to be administered to achieve equivalent plasma concentration-time profiles between the two groups. This linear scaling in the amount of drug in pediatric and adult population has also been observed in human clinical studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology--drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157–67.

    CAS  PubMed  Google Scholar 

  2. 2.

    Elder DP, Holm R, Kuentz M. Medicines for pediatric patients-biopharmaceutical, developmental, and regulatory considerations. J Pharm Sci. 2017;106(4):950–60.

    CAS  PubMed  Google Scholar 

  3. 3.

    Hines RN. The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharmacol Ther. 2008;118(2):250–67.

    CAS  PubMed  Google Scholar 

  4. 4.

    Batchelor HK, Fotaki N, Klein S. Paediatric oral biopharmaceutics: key considerations and current challenges. Adv Drug Deliv Rev. 2014;73:102–26.

    CAS  PubMed  Google Scholar 

  5. 5.

    Brouwer KL, Aleksunes LM, Brandys B, Giacoia GP, Knipp G, Lukacova V, et al. Human ontogeny of drug transporters: review and recommendations of the pediatric transporter working group. Clin Pharmacol Ther. 2015;98(3):266–87.

  6. 6.

    Mulhall A, de Louvois J, Hurley R. Chloramphenicol toxicity in neonates: its incidence and prevention. Br Med J (Clin Res Ed). 1983;287(6403):1424–7.

    CAS  Google Scholar 

  7. 7.

    Feder HM Jr. Chloramphenicol: what we have learned in the last decade. South Med J. 1986;79(9):1129–34.

    PubMed  Google Scholar 

  8. 8.

    Chen M, LeDuc B, Kerr S, Howe D, Williams DA. Identification of human UGT2B7 as the major isoform involved in the O-glucuronidation of chloramphenicol. Drug Metab Dispos. 2010;38(3):368–75.

    CAS  PubMed  Google Scholar 

  9. 9.

    Turner MA, Duncan J, Shah U, Metsvaht T, Varendi H, Nellis G, et al. European study of neonatal exposure to excipients: an update. Int J Pharm. 2013;457(1):357–8.

  10. 10.

    Schmitt G. Safety of excipients in pediatric formulations-a call for toxicity studies in juvenile animals? Child (Basel). 2015;2(2):191–7.

    Google Scholar 

  11. 11.

    Allegaert K, Vanhaesebrouck S, Kulo A, Cosaert K, Verbesselt R, Debeer A, et al. Prospective assessment of short-term propylene glycol tolerance in neonates. Arch Dis Child. 2010;95(12):1054–8.

  12. 12.

    Ivanovska V, Rademaker CM, van Dijk L, Mantel-Teeuwisse AK. Pediatric drug formulations: a review of challenges and progress. Pediatrics. 2014;134(2):361–72.

    PubMed  Google Scholar 

  13. 13.

    Gupta A, Khan MA. Challenges of pediatric formulations: a FDA science perspective. Int J Pharm. 2013;457(1):346–8.

    CAS  PubMed  Google Scholar 

  14. 14.

    (FDA) TFaDA. Best Pharmaceuticals for Children Act and Pediatric Research Equity Act 2016 [Available from: Accessed 30 May 2018.

  15. 15.

    Salunke S, Giacoia G, Tuleu C. The STEP (safety and toxicity of excipients for paediatrics) database. Part 1-a need assessment study. Int J Pharm. 2012;435(2):101–11.

    CAS  PubMed  Google Scholar 

  16. 16.

    Salunke S, Brandys B, Giacoia G, Tuleu C. The STEP (safety and toxicity of excipients for paediatrics) database: part 2 - the pilot version. Int J Pharm. 2013;457(1):310–22.

    CAS  PubMed  Google Scholar 

  17. 17.

    Tissen C, Woertz K, Breitkreutz J, Kleinebudde P. Development of mini-tablets with 1mm and 2mm diameter. Int J Pharm. 2011;416(1):164–70.

    CAS  PubMed  Google Scholar 

  18. 18.

    Stoltenberg I, Breitkreutz J. Orally disintegrating mini-tablets (ODMTs)--a novel solid oral dosage form for paediatric use. Eur J Pharm Biopharm. 2011;78(3):462–9.

    CAS  PubMed  Google Scholar 

  19. 19.

    Lou H, Liu M, Wang L, Mishra SR, Qu W, Johnson J, et al. Development of a mini-tablet of co-grinded prednisone-Neusilin complex for pediatric use. AAPS PharmSciTech. 2013;14(3):950–8.

  20. 20.

    Preis M. Orally disintegrating films and mini-tablets-innovative dosage forms of choice for pediatric use. AAPS PharmSciTech. 2015;16(2):234–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Mitra B, Chang J, Wu SJ, Wolfe CN, Ternik RL, Gunter TZ, et al. Feasibility of mini-tablets as a flexible drug delivery tool. Int J Pharm. 2017;525(1):149–59.

  22. 22.

    (FDA) TFaDA. Guidance for Industry - Size of Beads in Drug Products Labeled for Sprinkle 2012 [Available from: Accessed 24 May 2018.

  23. 23.

    Peyron MA, Mishellany A, Woda A. Particle size distribution of food boluses after mastication of six natural foods. J Dent Res. 2004;83(7):578–82.

    PubMed  Google Scholar 

  24. 24.

    Prasse JE, Kikano GE. An overview of pediatric dysphagia. Clin Pediatr (Phila). 2009;48(3):247–51.

    Google Scholar 

  25. 25.

    Matsuo K, Palmer JB. Anatomy and physiology of feeding and swallowing: normal and abnormal. Phys Med Rehabil Clin N Am. 2008;19(4):691–707 vii.

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Jadcherla S. Dysphagia in the high-risk infant: potential factors and mechanisms. Am J Clin Nutr. 2016;103(2):622S–8S.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Sura L, Madhavan A, Carnaby G, Crary MA. Dysphagia in the elderly: management and nutritional considerations. Clin Interv Aging. 2012;7:287–98.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Parashar UD, Hummelman EG, Bresee JS, Miller MA, Glass RI. Global illness and deaths caused by rotavirus disease in children. Emerg Infect Dis. 2003;9(5):565–72.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Sullivan R, Kowalczyk JR, Agarwal B, Ladenstein R, Fitzgerald E, Barr R, et al. New policies to address the global burden of childhood cancers. Lancet Oncol. 2013;14(3):e125–35.

  30. 30.

    Smith MA, Seibel NL, Altekruse SF, Ries LA, Melbert DL, O'Leary M, et al. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol. 2010;28(15):2625–34.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A. 2003;100(25):15178–83.

  32. 32.

    Bodey B, Kaiser HE, Siegel SE. Epidermal growth factor receptor (EGFR) expression in childhood brain tumors. In Vivo. 2005;19(5):931–41.

    CAS  PubMed  Google Scholar 

  33. 33.

    Cepero V, Sierra JR, Giordano S. Tyrosine kinases as molecular targets to inhibit cancer progression and metastasis. Curr Pharm Des. 2010;16(12):1396–409.

    CAS  PubMed  Google Scholar 

  34. 34.

    Giamas G, Man YL, Hirner H, Bischof J, Kramer K, Khan K, et al. Kinases as targets in the treatment of solid tumors. Cell Signal. 2010;22(7):984–1002.

  35. 35.

    English DP, Roque DM, Santin AD. HER2 expression beyond breast cancer: therapeutic implications for gynecologic malignancies. Mol Diagn Ther. 2013;17(2):85–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Tevaarwerk AJ, Kolesar JM. Lapatinib: a small-molecule inhibitor of epidermal growth factor receptor and human epidermal growth factor receptor-2 tyrosine kinases used in the treatment of breast cancer. Clin Ther. 2009;31(Pt 2):2332–48.

    CAS  PubMed  Google Scholar 

  37. 37.

    Medina PJ, Goodin S. Lapatinib: a dual inhibitor of human epidermal growth factor receptor tyrosine kinases. Clin Ther. 2008;30(8):1426–47.

    CAS  PubMed  Google Scholar 

  38. 38.

    Skolnik JM, Adamson PC. Tyrosine kinase inhibitors in pediatric malignancies. Cancer Investig. 2007;25(7):606–12.

    CAS  Google Scholar 

  39. 39.

    Saletta F, Wadham C, Ziegler DS, Marshall GM, Haber M, McCowage G, et al. Molecular profiling of childhood cancer: biomarkers and novel therapies. BBA Clin. 2014;1:59–77.

  40. 40.

    Herbrink M, Nuijen B, Schellens JH, Beijnen JH. Variability in bioavailability of small molecular tyrosine kinase inhibitors. Cancer Treat Rev. 2015;41(5):412–22.

    CAS  PubMed  Google Scholar 

  41. 41.

    Van den Mooter G. The use of amorphous solid dispersions: a formulation strategy to overcome poor solubility and dissolution rate. Drug Discov Today Technol. 2012;9(2):e71–e174.

    Google Scholar 

  42. 42.

    Baghel S, Cathcart H, O'Reilly NJ. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci. 2016;105(9):2527–44.

    CAS  PubMed  Google Scholar 

  43. 43.

    Haouala A, Zanolari B, Rochat B, Montemurro M, Zaman K, Duchosal MA, et al. Therapeutic Drug Monitoring of the new targeted anticancer agents imatinib, nilotinib, dasatinib, sunitinib, sorafenib and lapatinib by LC tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2009;877(22):1982–96.

  44. 44.

    Spomer N, Klingmann V, Stoltenberg I, Lerch C, Meissner T, Breitkreutz J. Acceptance of uncoated mini-tablets in young children: results from a prospective exploratory cross-over study. Arch Dis Child. 2012;97(3):283–6.

    PubMed  Google Scholar 

  45. 45.

    Klingmann V, Spomer N, Lerch C, Stoltenberg I, Fromke C, Bosse HM, et al. Favorable acceptance of mini-tablets compared with syrup: a randomized controlled trial in infants and preschool children. J Pediatr. 2013;163(6):1728–32 e1.

  46. 46.

    Klingmann V, Seitz A, Meissner T, Breitkreutz J, Moeltner A, Bosse HM. Acceptability of uncoated mini-tablets in neonates--a randomized controlled trial. J Pediatr. 2015;167(4):893–6 e2.

  47. 47.

    Lipkovich I, Adams DH, Mallinckrodt C, Faries D, Baron D, Houston JP. Evaluating dose response from flexible dose clinical trials. BMC Psych. 2008;8:3.

    Google Scholar 

  48. 48.

    Fouladi M, Stewart CF, Blaney SM, Onar-Thomas A, Schaiquevich P, Packer RJ, et al. Phase I trial of lapatinib in children with refractory CNS malignancies: a pediatric brain tumor consortium study. J Clin Oncol. 2010;28(27):4221–7.

  49. 49.

    Freeman BB 3rd, Daw NC, Geyer JR, Furman WL, Stewart CF. Evaluation of gefitinib for treatment of refractory solid tumors and central nervous system malignancies in pediatric patients. Cancer Investig. 2006;24(3):310–7.

    CAS  Google Scholar 

  50. 50.

    Furman WL, McGregor LM, McCarville MB, Onciu M, Davidoff AM, Kovach S, et al. A single-arm pilot phase II study of gefitinib and irinotecan in children with newly diagnosed high-risk neuroblastoma. Investig New Drugs. 2012;30(4):1660–70.

    CAS  Google Scholar 

  51. 51.

    Pollack IF, Stewart CF, Kocak M, Poussaint TY, Broniscer A, Banerjee A, et al. A phase II study of gefitinib and irradiation in children with newly diagnosed brainstem gliomas: a report from the Pediatric Brain Tumor Consortium. Neuro-Oncology. 2011;13(3):290–7.

  52. 52.

    Geoerger B, Hargrave D, Thomas F, Ndiaye A, Frappaz D, Andreiuolo F, et al. Innovative therapies for children with cancer pediatric phase I study of erlotinib in brainstem glioma and relapsing/refractory brain tumors. Neuro-Oncology. 2011;13(1):109–18.

  53. 53.

    Song Y, Yang X, Chen X, Nie H, Byrn S, Lubach JW. Investigation of drug-excipient interactions in lapatinib amorphous solid dispersions using solid-state NMR spectroscopy. Mol Pharm. 2015;12(3):857–66.

    CAS  PubMed  Google Scholar 

  54. 54.

    de Araujo GL, Benmore CJ, Byrn SR. Local structure of ion pair interaction in lapatinib amorphous dispersions characterized by synchrotron X-ray diffraction and pair distribution function analysis. Sci Rep. 2017;7:46367.

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Konno H, Taylor LS. Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J Pharm Sci. 2006;95(12):2692–705.

    CAS  PubMed  Google Scholar 

  56. 56.

    Qian F, Huang J, Hussain MA. Drug–polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. J Pharm Sci. 2010;99(7):2941–7.

    CAS  PubMed  Google Scholar 

  57. 57.

    Nie H, Mo H, Zhang M, Song Y, Fang K, Taylor LS, et al. Investigating the interaction pattern and structural elements of a drug–polymer complex at the molecular level. Mol Pharm. 2015;12(7):2459–68.

  58. 58.

    Nie H, Su Y, Zhang M, Song Y, Leone A, Taylor LS, et al. Solid-state spectroscopic investigation of molecular interactions between clofazimine and hypromellose phthalate in amorphous solid dispersions. Mol Pharm. 2016;13(11):3964–75.

  59. 59.

    Lavan M, Knipp G. Effects of dendrimer-like biopolymers on physical stability of amorphous solid dispersions and drug permeability across Caco-2 cell monolayers. AAPS PharmSciTech. 2018;19(6):2459–71.

    CAS  PubMed  Google Scholar 

  60. 60.

    Sage DP, Kulczar C, Roth W, Liu W, Knipp GT. Persistent pharmacokinetic challenges to pediatric drug development. Front Genet. 2014;5:281.

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Swindle MM, Makin A, Herron AJ, Clubb FJ Jr, Frazier KS. Swine as models in biomedical research and toxicology testing. Vet Pathol. 2012;49(2):344–56.

    CAS  PubMed  Google Scholar 

  62. 62.

    Dekaney CM, Bazer FW, Jaeger LA. Mucosal morphogenesis and cytodifferentiation in fetal porcine small intestine. Anat Rec. 1997;249(4):517–23.

    CAS  PubMed  Google Scholar 

  63. 63.

    Achour B, Barber J, Rostami-Hodjegan A. Cytochrome P450 pig liver pie: determination of individual cytochrome P450 isoform contents in microsomes from two pig livers using liquid chromatography in conjunction with mass spectrometry [corrected]. Drug Metab Dispos. 2011;39(11):2130–4.

    CAS  PubMed  Google Scholar 

  64. 64.

    Dalgaard L. Comparison of minipig, dog, monkey and human drug metabolism and disposition. J Pharmacol Toxicol Methods. 2015;74:80–92.

    CAS  PubMed  Google Scholar 

  65. 65.

    Kulkarni R, Yumibe N, Wang Z, Zhang X, Tang CC, Ruterbories K, et al. Comparative pharmacokinetics studies of immediate- and modified-release formulations of glipizide in pigs and dogs. J Pharm Sci. 2012;101(11):4327–36.

  66. 66.

    Roth WJ, Kissinger CB, McCain RR, Cooper BR, Marchant-Forde JN, Vreeman RC, et al. Assessment of juvenile pigs to serve as human pediatric surrogates for preclinical formulation pharmacokinetic testing. AAPS J. 2013;15(3):763–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Burris HA 3rd, Hurwitz HI, Dees EC, Dowlati A, Blackwell KL, O'Neil B, et al. Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol. 2005;23(23):5305–13.

    CAS  PubMed  Google Scholar 

  68. 68.

    (FDA) TFaDA. Guidance for Industry - Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers 2005. Available from: Accessed 18 Jun 2018.

Download references


This project was supported by Dane O. Kildsig Center for Pharmaceutical Processing Research (CPPR). We would like to thank Dr. Scott Hostetler (Elanco Animal Health) and Dr. Robert Sepelyak (AstraZeneca) for providing suggestions and serving as industry mentors for these studies.

Author information



Corresponding author

Correspondence to Gregory Knipp.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lavan, M., Wang, X., McCain, R. et al. Development of a Pediatric Mini-Tablet Formulation for Expedited Preclinical Studies. AAPS PharmSciTech 22, 40 (2021).

Download citation


  • Amorphous dispersion
  • Juvenile porcine model
  • Pharmacokinetics
  • Pediatric drug delivery
  • Mini-tablets