Skip to main content

Advertisement

Log in

Aerosolization Performance, Antitussive Effect and Local Toxicity of Naringenin-Hydroxypropyl-β-Cyclodextrin Inhalation Solution for Pulmonary Delivery

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of present study was to evaluate the feasibility of a naringenin-hydroxypropyl-β-cyclodextrin (naringenin-HPβCD) inhalation solution for pulmonary delivery. Naringenin, a flavanone derived from citrus fruits, has been proven to exhibit excellent peripheral antitussive effect. To address the limitation of its poor oral bioavailability and low local concentration in the lung, a naringenin-HPβCD inhalation solution was prepared for pulmonary delivery. The aerosolization performance of formulation was evaluated by next generation impactor (NGI). Both dose-dependent and time-dependent antitussive effects of naringenin-HPβCD inhalation solution on acute cough induced by citric acid in guinea pigs were investigated. In vitro toxicity of naringenin-HPβCD inhalation solution in pulmonary Calu-3 cells was evaluated by MTS assay, and in vivo local toxicity investigation was achieved by assessing bronchoalveolar lavage (BALF) and lung histology after a 7-day inhalation treatment in guinea pigs. Fine particle fraction (FPF) of the formulation was determined as 53.09%. After inhalation treatment of 15 min, naringenin-HPβCD inhalation solution within the studied range of 0.2–3.6 mg/kg could dose-dependently reduce the cough frequency with the antitussive rate of 29.42–39.42%. Naringenin-HPβCD inhalation solution in concentration range of 100–400 μM did not decrease cell viability of Calu-3 cells, and the maximum effective dose (3.6 mg/kg) was non-toxic during the short-term inhalation treatment for guinea pigs. In conclusion, naringenin-HPβCD inhalation solution was capable for nebulization and could provide rapid response with reduced dose for the treatment of cough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Joshi R, Kulkarni YA, Wairkar S. Pharmacokinetic, pharmacodynamic and formulations aspects of Naringenin: an update. Life Sci. 2018;215:43–56.

    Article  CAS  PubMed  Google Scholar 

  2. Barreca D, Gattuso G, Bellocco E, Calderaro A, Trombetta D, Smeriglio A, et al. Flavanones: citrus phytochemical with health-promoting properties. BioFactors. 2017;43(4):495–506.

    Article  CAS  PubMed  Google Scholar 

  3. Fouad AA, Albuali WH, Jresat I. Protective effect of Naringenin against lipopolysaccharide-induced acute lung injury in rats. Pharmacology. 2016;97:224–32.

    Article  CAS  PubMed  Google Scholar 

  4. Na Wangsupa/sup DLss, Nai-Hao Lusupb/sup, Lian Yisupb/sup, Xiao-Wei Huangsupa/supsupb/sup, Gaosupb/sup Z-H. Peroxynitrite and hemoglobin-mediated nitrative/oxidative modification of human plasma protein: effects of some flavonoids. J Asian Nat Prod Res. 2010;12(4):257–64.

    Article  Google Scholar 

  5. Aparna P, Min, Tian, Martha A, et al. The citrus fruit flavonoid naringenin suppresses hepatic glucose production from Fao hepatoma cells. In: Molecular Nutrition & Food Research; 2009.

    Google Scholar 

  6. Arul D, Subramanian P. Naringenin (citrus flavonone) induces growth inhibition, cell cycle arrest and apoptosis in human hepatocellular carcinoma cells. Pathol Oncol Res. 2013;19(4):763–70.

    Article  CAS  PubMed  Google Scholar 

  7. Gao S, Li P, Yang H, Fang S, Su W. Antitussive effect of Naringin on experimentally induced cough in guinea pigs. Planta Med. 2010;77(01):16–21.

    Article  PubMed  Google Scholar 

  8. Luo YL, Zhang CC, Li PB, Nie YC, Wu H, Shen JG, et al. Naringin attenuates enhanced cough, airway hyperresponsiveness and airway inflammation in a guinea pig model of chronic bronchitis induced by cigarette smoke. Int Immunopharmacol. 2012;13(3):301–7.

    Article  CAS  PubMed  Google Scholar 

  9. Jiao HY, Su WW, Li PB, Liao Y, Zhou Q, Zhu N, et al. Therapeutic effects of naringin in a guinea pig model of ovalbumin-induced cough-variant asthma. Pulm Pharmacol Ther. 2015;33:59–65.

    Article  CAS  PubMed  Google Scholar 

  10. Dicpinigaitis PV. Current and future peripherally-acting antitussives. Respir Physiol Neurobiol. 2006;152(3):356–62.

    Article  CAS  PubMed  Google Scholar 

  11. Wang Y, Wang S, Firempong CK, Zhang H, Wang M, Zhang Y, et al. Enhanced solubility and bioavailability of naringenin via liposomal nanoformulation: preparation and in vitro and in vivo evaluations. AAPS PharmSciTech. 2017;18(3):586–94.

    Article  PubMed  Google Scholar 

  12. Khan AW, Kotta S, Ansari SH, Sharma RK, Ali J. Self-nanoemulsifying drug delivery system (SNEDDS) of the poorly water-soluble grapefruit flavonoid naringenin: design, characterization, in vitro and in vivo evaluation. Drug Deliv. 2015;22(4):552–61.

    Article  CAS  PubMed  Google Scholar 

  13. Zou W, Yang C, Liu M, Su W. Tissue distribution study of naringin in rats by liquid chromatography-tandem mass spectrometry. Arzneimittel-Forschung. 2012;62(4):181–6.

    CAS  PubMed  Google Scholar 

  14. Khan AW, Kotta S, Ansari SH, Sharma RK, Ali J. Enhanced dissolution and bioavailability of grapefruit flavonoid naringenin by solid dispersion utilizing fourth generation carrier. Drug Dev Ind Pharm. 41(5):772–9.

  15. Shulman M, Cohen M, Soto-Gutierrez A, Yagi H, Wang H, Goldwasser J, et al. Enhancement of naringenin bioavailability by complexation with hydroxypropyl-β-cyclodextrin. [corrected]. PLoS One. 2011;6(4):e18033-e.

    Article  Google Scholar 

  16. Guan M, Shi R, Zheng Y, Zeng X, Fan W, Wang Y, et al. Characterization, in vitro and in vivo evaluation of naringenin-hydroxypropyl-ss-cyclodextrin inclusion for pulmonary delivery. Molecules. 2020;25(3):554.

    Article  CAS  PubMed Central  Google Scholar 

  17. Zhao Z, Huang Z, Zhang X, Huang Y, Cui Y, Ma C, et al. Low density, good flowability cyclodextrin-raffinose binary carrier for dry powder inhaler: anti-hygroscopicity and aerosolization performance enhancement. Expert Opin Drug Deliv. 2018;15(5):443–57.

    Article  CAS  PubMed  Google Scholar 

  18. Ong HX, Traini D, Cipolla D, Gonda I, Bebawy M, Agus H, et al. Liposomal nanoparticles control the uptake of ciprofloxacin across respiratory epithelia. Pharm Res. 2012;29(12):3335–46.

    Article  CAS  PubMed  Google Scholar 

  19. Li Q, Zhan S, Liu Q, Su H, Dai X, Wang H, et al. Preparation of a sustained-release nebulized aerosol of R-terbutaline hydrochloride liposome and evaluation of its anti-asthmatic effects via pulmonary delivery in guinea pigs. AAPS PharmSciTech. 2018;19(1):232–41.

    Article  CAS  PubMed  Google Scholar 

  20. Abdelrahim ME, Chrystyn H. Aerodynamic characteristics of nebulized terbutaline sulphate using the next generation impactor (NGI) and CEN method. J Aerosol Med Pulm Drug Deliv. 2009;22(1):19–28.

    Article  PubMed  Google Scholar 

  21. Suarez S, Kazantseva M, Bhat M, et al. The influence of suspension nebulization or instillation on particle uptake by guinea pig alveolar macrophages. Inhal Toxicol. 2001;13(9):773–88.

    Article  CAS  PubMed  Google Scholar 

  22. Shen YB, Du Z, Tang C, Guan YX, Yao SJ. Formulation of insulin-loaded N-trimethyl chitosan microparticles with improved efficacy for inhalation by supercritical fluid assisted atomization. Int J Pharm. 2016;505:223–33.

    Article  CAS  PubMed  Google Scholar 

  23. Stocke NA, Meenach SA, Arnold SM, Mansour HM, Hilt JZ. Formulation and characterization of inhalable magnetic nanocomposite microparticles (MnMs) for targeted pulmonary delivery via spray drying. Int J Pharm. 2015;479(2):320–8.

    Article  CAS  PubMed  Google Scholar 

  24. Shi R, Xiao ZT, Zheng YJ, Zhang YL, Xu JW, Huang JH, et al. Naringenin regulates CFTR activation and expression in airway epithelial cells. Cell Physiol Biochem. 2017;44(3):1146–60.

    Article  CAS  PubMed  Google Scholar 

  25. Luo YL, Li PB, Zhang CC, Zheng YF, Wang S, Nie YC, et al. Effects of four antitussives on airway neurogenic inflammation in a Guinea pig model of chronic cough induced by cigarette smoke exposure. Inflam Res. 2013;62(12):1053–61.

    Article  CAS  Google Scholar 

  26. Fang TZ: Studies on pharmacodynamics and pharmacokinetics of naringenin. PhD Thesis. Sun Yat-sen University. 2005. (In Chinese).

  27. El Mohsen MA, Marks J, Kuhnle G, Rice-Evans C, Moore K, Gibson G, et al. The differential tissue distribution of the citrus flavanone naringenin following gastric instillation. Free Radic Res. 2004;38(12):1329–40.

    Article  PubMed  Google Scholar 

  28. Bakand S, Hayes A, Dechsakulthorn F. Nanoparticles: a review of particle toxicology following inhalation exposure. Inhal Toxicol. 2012;24(2):125–35.

    Article  CAS  PubMed  Google Scholar 

  29. Kwon D, Kwon J-T, Lim Y-M, Shim I, Kim H-M. Inhalation toxicity of benzalkonium chloride and triethylene glycol mixture in rats. Toxicol Appl Pharmacol. 2019;378:114609.

    Article  CAS  PubMed  Google Scholar 

  30. Chaurasiya B, Huang L, Du Y, Tang B, Sun C. Size-based anti-tumoral effect of paclitaxel loaded albumin microparticle dry powders for inhalation to treat metastatic lung cancer in a mouse model. Int J Pharm. 2018;542(1–2):90–9.

    Article  CAS  PubMed  Google Scholar 

  31. Evrard B, Bertholet P, Gueders M, Flament MP, Piel G, Delattre L, et al. Cyclodextrins as a potential carrier in drug nebulization. J Contr Release. 2004;96(3):403–10.

    Article  CAS  Google Scholar 

  32. Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010;392(1–2):1–19.

    Article  CAS  PubMed  Google Scholar 

  33. Sultana S, Ali R, Talegaonkar S, Ahmad FJ, Mittal G, Bhatnagar A. In vivo lung deposition and sub-acute inhalation toxicity studies of nano-sized alendronate sodium as an antidote for inhaled toxic substances in Sprague Dawley rats. Environ Toxicol Pharmacol. 2013;36(2):636–47.

    Article  CAS  PubMed  Google Scholar 

  34. Asai A, Okuda T, Sonoda E, Yamauchi T, Kato S, Okamoto H. Drug permeation characterization of inhaled dry powder formulations in air-liquid interfaced cell layer using an improved, simple apparatus for dispersion. Pharm Res. 2016;33(2):487–97.

    Article  CAS  PubMed  Google Scholar 

  35. Sawatdee S, Phetmung H, Srichana T. Sildenafil citrate monohydrate-cyclodextrin nanosuspension complexes for use in metered-dose inhalers. Int J Pharm. 2013;455(1–2):248–58.

    Article  CAS  PubMed  Google Scholar 

  36. Ong HX, Traini D, Young PM. Pharmaceutical applications of the Calu-3 lung epithelia cell line. Expert Opin Drug Deliv. 2013;10(9):1287–302.

    Article  CAS  PubMed  Google Scholar 

  37. Meindl C, Stranzinger S, Dzidic N, Salar-Behzadi S, Mohr S, Zimmer A, et al. Permeation of therapeutic drugs in different formulations across the airway epithelium in vitro. PLoS One. 2015;10(8):e0135690.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sakagami M. In vivo, in vitro and ex vivo models to assess pulmonary absorption and disposition of inhaled therapeutics for systemic delivery. Adv Drug Deliv Rev. 2006;58(9–10):1030–60.

    Article  CAS  PubMed  Google Scholar 

  39. Tewes F, Brillault J, Couet W, Olivier J-C. Formulation of rifampicin–cyclodextrin complexes for lung nebulization. J Control Release. 2008;129(2):93–9.

    Article  CAS  PubMed  Google Scholar 

  40. Hammoud Z, Khreich N, Auezova L, Fourmentin S, Elaissari A, Greige-Gerges H. Cyclodextrin-membrane interaction in drug delivery and membrane structure maintenance. Int J Pharm. 2019;564:59–76.

    Article  CAS  PubMed  Google Scholar 

  41. Salem LB, Bosquillon C, Dailey LA, Delattre L, Martin GP, Evrard B, et al. Sparing methylation of β-cyclodextrin mitigates cytotoxicity and permeability induction in respiratory epithelial cell layers in vitro. J Control Release. 2009;136(2):110–6.

    Article  CAS  PubMed  Google Scholar 

  42. Loftsson T, Vogensen SB, Brewster ME, Konráðsdóttir F. Effects of cyclodextrins on drug delivery through biological membranes. J Pharm Sci. 2007;96(10):2532–46.

    Article  CAS  PubMed  Google Scholar 

  43. Matilainen L, Toropainen T, Vihola H, Hirvonen J, Jarvinen T, Jarho P, et al. In vitro toxicity and permeation of cyclodextrins in Calu-3 cells. J Contr Release. 2008;126(1):10–6.

    Article  CAS  Google Scholar 

  44. Proniuk S, Blanchard J. Influence of degree of substitution of cyclodextrins on their colligative properties in solution. J Pharm Sci. 2001;90(8):1086–90.

    Article  CAS  PubMed  Google Scholar 

  45. Zannou EA, Streng WH, Stella VJ. Osmotic properties of sulfobutylether and hydroxypropyl cyclodextrins. Pharm Res. 2001;18(8):1226–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the Science and Technology Planning Project of Guangdong Province in China (2019B090905002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Su.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, M., Zeng, X., Shi, R. et al. Aerosolization Performance, Antitussive Effect and Local Toxicity of Naringenin-Hydroxypropyl-β-Cyclodextrin Inhalation Solution for Pulmonary Delivery. AAPS PharmSciTech 22, 20 (2021). https://doi.org/10.1208/s12249-020-01889-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01889-5

KEY WORDS

Navigation