Skip to main content
Log in

Optimization of Critical Quality Attributes in Tablet Film Coating and Design Space Determination Using Pilot-Scale Experimental Data

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In this study, the novel high-speed tablet film coating process in the continuous manufacturing was investigated. The influence of key process variables (inlet air flow rate, inlet air temperature, and suspension spray rate) were investigated using a Box-Behnken experimental design method. Statistical regression models were developed to predict the outlet air temperature and relative humidity, the coating efficiency, the tablet moisture content, and coating uniformity. The effects of the three key process variables were comprehensively investigated based on mathematical analysis, contour plots, and interaction plots. The results indicate that all the process responses are affected by changing the inlet air flow rate, temperature, and suspension spray rate. A design space (DS) in terms of failure probability was determined based on specifications for tablet moisture content (< 3.5%) and coating uniformity (tablet weight standard deviation < 4 mg for tablet weight of 200 mg) using Monte Carlo simulations. Independent experiments were carried out and successfully validated the robustness and accuracy of the determined DS for the investigated tablet film coating process. All the data were generated using an industrial pilot-scale novel high-speed tablet coating unit from a continuous manufacturing line. The work facilitates the quality by design implementation of continuous pharmaceutical manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Galbraith SC, Liu H, Cha B, Park S-Y, Huang Z, Yoon S. Modeling and simulation of continuous powder blending applied to a continuous direct compression process. Pharm Dev Technol. 2018;23(10):1097–107. https://doi.org/10.1080/10837450.2018.1425429.

    Article  CAS  PubMed  Google Scholar 

  2. Park S-Y, Galbraith SC, Liu H, Lee H, Cha B, Huang Z, et al. Prediction of critical quality attributes and optimization of continuous dry granulation process via flowsheet modeling and experimental validation. Powder Technol. 2018;330:461–70. https://doi.org/10.1016/j.powtec.2018.02.042.

    Article  CAS  Google Scholar 

  3. Liu H, O'Connor T, Lee S, Yoon S. A process optimization strategy of a pulsed-spray fluidized bed granulation process based on predictive three-stage population balance model. Powder Technol. 2018;327:188–200. https://doi.org/10.1016/j.powtec.2017.12.070.

    Article  CAS  Google Scholar 

  4. Cha B, Galbraith SC, Liu H, Park S-Y, Huang Z, O’Connor T, et al. A thermodynamic balance model for liquid film drying kinetics of a tablet film coating and drying process. AAPS PharmSciTech. 2019;20(5):209. https://doi.org/10.1208/s12249-019-1398-8.

    Article  CAS  PubMed  Google Scholar 

  5. Liu H, Ricart B, Stanton C, Smith-Goettler B, Verdi L, O'Connor T, et al. Design space determination and process optimization in at-scale continuous twin screw wet granulation. Comput Chem Eng. 2019;125:271–86. https://doi.org/10.1016/j.compchemeng.2019.03.026.

    Article  CAS  Google Scholar 

  6. Galbraith SC, Cha B, Huang Z, Park S, Liu H, Meyer RF, et al. Integrated modeling of a continuous direct compression tablet manufacturing process: A production scale case study. Powder Technol. 2019;354:199–210. https://doi.org/10.1016/j.powtec.2019.05.078.

    Article  CAS  Google Scholar 

  7. Yoon S, Galbraith S, Cha B, Liu H. Chapter 5 - Flowsheet modeling of a continuous direct compression process. In: Singh R, editor. Yuan Z, editors. Computer Aided Chemical Engineering: Elsevier; 2018. p. 121–39.

    Google Scholar 

  8. Huang Z, Galbraith SC, Cha B, Liu H, Park S, Flamm MH, et al. Effects of process parameters on tablet critical quality attributes in continuous direct compression: a case study of integrating data-driven statistical models and mechanistic compaction models. Pharm Dev Technol. 2020;25:1–12. https://doi.org/10.1080/10837450.2020.1805760.

    Article  CAS  Google Scholar 

  9. Galbraith; SC, Huang; Z, Cha; B, Liu; H, Hurley; S, Flamm; MH, et al. Flowsheet modeling of a continuous direct compression tableting process at production scale. FOCAPO 2017. 2017.

  10. Liu; H, Galbraith; S, Cha; B, Huang; Z, Park; S, Yoon; S. Online optimization of a top-spray fluidized bed granulation process based on a three-stage population balance model. FOCAPO 2017. 2017.

  11. Felton LA. Mechanisms of polymeric film formation. Int J Pharm. 2013;457(2):423–7. https://doi.org/10.1016/j.ijpharm.2012.12.027.

    Article  CAS  PubMed  Google Scholar 

  12. Sharareh SB, Stefan T, Helmut V. Innovations in coating technology. Recent Patents on Drug Delivery & Formulation. 2008;2(3):209–30. https://doi.org/10.2174/187221108786241633.

    Article  Google Scholar 

  13. Timmins GS. A nondestructive technique to determine the rate of oxygen permeation into solid dosage forms AU - Felton. L A Pharmaceutical Development and Technology. 2006;11(1):141–7. https://doi.org/10.1080/10837450600561208.

    Article  CAS  Google Scholar 

  14. Rao V, Guo H, Li D, Stein D, Hu FY, Kiesnowski C. An active film-coating approach to enhance chemical stability of a potent drug molecule AU – Desai, Divyakant. Pharmaceutical Development and Technology. 2012;17(2):227–35. https://doi.org/10.3109/10837450.2010.531737.

    Article  CAS  PubMed  Google Scholar 

  15. Galbraith SC, Park S, Huang Z, Liu H, Meyer RF, Metzger M, et al. Linking process variables to residence time distribution in a hybrid flowsheet model for continuous direct compression. Chem Eng Res Des. 2020;153:85–95. https://doi.org/10.1016/j.cherd.2019.10.026.

    Article  CAS  Google Scholar 

  16. Tanabe S, Nakagawa H, Watanabe T, Minami H, Kano M, Urbanetz NA. Setting the process parameters for the coating process in order to assure tablet appearance based on multivariate analysis of prior data. Int J Pharm. 2016;511(1):341–50. https://doi.org/10.1016/j.ijpharm.2016.07.023.

    Article  CAS  PubMed  Google Scholar 

  17. Just S, Toschkoff G, Funke A, Djuric D, Scharrer G, Khinast J, et al. Optimization of the inter-tablet coating uniformity for an active coating process at lab and pilot scale. Int J Pharm. 2013;457(1):1–8. https://doi.org/10.1016/j.ijpharm.2013.09.010.

    Article  CAS  PubMed  Google Scholar 

  18. Barimani S, Šibanc R, Kleinebudde P. Optimization of a semi-batch tablet coating process for a continuous manufacturing line by design of experiments. Int J Pharm. 2018;539(1):95–103. https://doi.org/10.1016/j.ijpharm.2018.01.038.

    Article  CAS  PubMed  Google Scholar 

  19. Möltgen CV, Puchert T, Menezes JC, Lochmann D, Reich G. A novel in-line NIR spectroscopy application for the monitoring of tablet film coating in an industrial scale process. Talanta. 2012;92:26–37. https://doi.org/10.1016/j.talanta.2011.12.034.

    Article  CAS  PubMed  Google Scholar 

  20. Wang J, Hemenway J, Chen W, Desai D, Early W, Paruchuri S, et al. An evaluation of process parameters to improve coating efficiency of an active tablet film-coating process. Int J Pharm. 2012;427(2):163–9. https://doi.org/10.1016/j.ijpharm.2012.01.033.

    Article  CAS  PubMed  Google Scholar 

  21. Rege BD, Gawel J, Kou JH. Identification of critical process variables for coating actives onto tablets via statistically designed experiments. Int J Pharm. 2002;237(1):87–94. https://doi.org/10.1016/S0378-5173(02)00037-6.

    Article  CAS  PubMed  Google Scholar 

  22. Pandey P, Bindra DS, Felton LA. Influence of process parameters on tablet bed microenvironmental factors during Pan coating. AAPS PharmSciTech. 2014;15(2):296–305. https://doi.org/10.1208/s12249-013-0060-0.

    Article  CAS  PubMed  Google Scholar 

  23. Tobiska S, Kleinebudde P. Coating uniformity and coating efficiency in a Bohle Lab-Coater using oval tablets. Eur J Pharm Biopharm. 2003;56(1):3–9. https://doi.org/10.1016/S0939-6411(03)00026-2.

    Article  CAS  PubMed  Google Scholar 

  24. Brock D, Axel Zeitler J, Funke A, Knop K, Kleinebudde P. Evaluation of critical process parameters for inter-tablet coating uniformity of active-coated GITS using terahertz pulsed imaging. Eur J Pharm Biopharm. 2014;88(2):434–42. https://doi.org/10.1016/j.ejpb.2014.06.016.

    Article  CAS  PubMed  Google Scholar 

  25. Kestur U, Pandey P, Badawy S, Lin J, Desai D. Controlling the chemical stability of a moisture-sensitive drug product through monitoring and identification of coating process microenvironment. Int J Pharm. 2014;476(1):93–8. https://doi.org/10.1016/j.ijpharm.2014.09.030.

    Article  CAS  PubMed  Google Scholar 

  26. Bley O, Siepmann J, Bodmeier R. Protection of moisture-sensitive drugs with aqueous polymer coatings: importance of coating and curing conditions. Int J Pharm. 2009;378(1):59–65. https://doi.org/10.1016/j.ijpharm.2009.05.036.

    Article  CAS  PubMed  Google Scholar 

  27. Peck GE. Effect of aqueous film coating conditions on water removal efficiency and physical properties of coated tablet cores containing superdisintegrants AU - Pourkavoos, Nazaneen Drug Development and Industrial Pharmacy 1994;20(9):1535–1554. doi: https://doi.org/10.3109/03639049409050196.

  28. Patel JKS, A. M.; Sheth, N. R. Aqueous-based film coating of tablets: study the effect of critical process parameters. International Journal of PharmTech Research 2009;1(2):p235.

  29. Boehling P, Toschkoff G, Knop K, Kleinebudde P, Just S, Funke A, et al. Analysis of large-scale tablet coating: modeling, simulation and experiments. Eur J Pharm Sci. 2016;90:14–24. https://doi.org/10.1016/j.ejps.2015.12.022.

    Article  CAS  PubMed  Google Scholar 

  30. Liu H, Wang K, Schlindwein W, Li M. Using the Box–Behnken experimental design to optimise operating parameters in pulsed spray fluidised bed granulation. International Journal of Pharmaceutics. 2013;448(2):329–38. doi: https://doi.org/10.1016/j.ijpharm.2013.03.057.

  31. Liu H, Galbraith SC, Ricart B, Stanton C, Smith-Goettler B, Verdi L, et al. Optimization of critical quality attributes in continuous twin-screw wet granulation via design space validated with pilot scale experimental data. Int J Pharm. 2017;525(1):249–63. https://doi.org/10.1016/j.ijpharm.2017.04.055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu H. Modeling and Control of Batch Pulsed Top-spray Fluidized bed Granulation. PhD thesis, De Montfort University, UK. 2014.

  33. Liu H, Yoon S, Li M. Three-dimensional computational fluid dynamics (CFD) study of the gas–particle circulation pattern within a fluidized bed granulator: by full factorial design of fluidization velocity and particle size. Dry Technol. 2017;35(9):1043–58. https://doi.org/10.1080/07373937.2016.1230628.

    Article  CAS  Google Scholar 

  34. Badawy SI, Narang AS, LaMarche KR, Subramanian GA, Varia SA, Lin J, et al. Integrated application of quality-by-design principles to drug product development: a case study of brivanib alaninate film-coated tablets. J Pharm Sci. 2016;105(1):168–81. https://doi.org/10.1016/j.xphs.2015.11.023.

    Article  CAS  PubMed  Google Scholar 

  35. He X, Barone MR, Marsac PJ, Sperry DC. Development of a rapidly dispersing tablet of a poorly wettable compound—formulation DOE and mechanistic study of effect of formulation excipients on wetting of celecoxib. Int J Pharm. 2008;353(1):176–86. https://doi.org/10.1016/j.ijpharm.2007.11.045.

    Article  CAS  PubMed  Google Scholar 

  36. Brock D, Zeitler JA, Funke A, Knop K, Kleinebudde P. Evaluation of critical process parameters for inter-tablet coating uniformity of active-coated GITS using terahertz pulsed imaging. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2014;88(2):434–42. https://doi.org/10.1016/j.ejpb.2014.06.016.

    Article  CAS  Google Scholar 

  37. Kemp IC, Iler L, Waldron M, Turnbull N. Modeling, experimental trials, and design space determination for the GEA ConsiGma™ coater. Dry Technol. 2019;37(4):475–85. https://doi.org/10.1080/07373937.2018.1463244.

    Article  Google Scholar 

  38. Liu H, Li M. Two-compartmental population balance modeling of a pulsed spray fluidized bed granulation based on computational fluid dynamics (CFD) analysis. Int J Pharm. 2014;475(1):256–69. https://doi.org/10.1016/j.ijpharm.2014.08.057.

    Article  CAS  PubMed  Google Scholar 

  39. Liu H, Li M. Population balance modelling and multi-stage optimal control of a pulsed spray fluidized bed granulation. Int J Pharm. 2014;468(1):223–33. https://doi.org/10.1016/j.ijpharm.2014.04.024.

    Article  CAS  PubMed  Google Scholar 

  40. Liu H, Galbraith SC, Park S-Y, Cha B, Huang Z, Meyer RF, et al. Assessment of spatial heterogeneity in continuous twin screw wet granulation process using three-compartmental population balance model. Pharm Dev Technol. 2019;24(1):105–17. https://doi.org/10.1080/10837450.2018.1427106.

    Article  CAS  PubMed  Google Scholar 

  41. Prpich A, am Ende MT, Katzschner T, Lubczyk V, Weyhers H, Bernhard G. Drug product modeling predictions for scale-up of tablet film coating—a quality by design approach. Comput Chem Eng 2010;34(7):1092–1097. doi: https://doi.org/10.1016/j.compchemeng.2010.03.006.

  42. Agrawal AM, Pandey P. Scale up of Pan coating process using quality by design principles. J Pharm Sci. 2015;104(11):3589–611. https://doi.org/10.1002/jps.24582.

    Article  CAS  PubMed  Google Scholar 

  43. Pandey P, Turton R, Joshi N, Hammerman E, Ergun J. Scale-up of a pan-coating process. AAPS PharmSciTech. 2006;7(4):102-. doi: https://doi.org/10.1208/pt0704102.

  44. Chen W, Chang S-Y, Kiang S, Early W, Paruchuri S, Desai DJJoPI. The measurement of spray quality for pan coating processes 2008;3(1):3–14. doi: https://doi.org/10.1007/s12247-008-9022-6.

  45. CDER FaDA. Guidance for industry Q8(R2) pharmaceutical development. November 2009.

    Google Scholar 

Download references

Acknowledgments

The project is supported by Merck & Co., Inc., Kenilworth, NJ, USA. The authors would like to thank Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA, for funding the project and providing the data set used in the present work. A license of software MODDE 12.0 has been provided by Sartorius Stedim Biotech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seongkyu Yoon.

Ethics declarations

Disclaimer

Views expressed in written materials or publications and by speakers and moderators do not necessarily reflect the official policies of the Department of Health and Human Services; nor does any mention of trade names, commercial practices, or organization imply endorsement by the US Government.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Meyer, R., Flamm, M. et al. Optimization of Critical Quality Attributes in Tablet Film Coating and Design Space Determination Using Pilot-Scale Experimental Data. AAPS PharmSciTech 22, 17 (2021). https://doi.org/10.1208/s12249-020-01884-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01884-w

KEY WORDS

Navigation