Skip to main content
Log in

pH-Independent Dissolution and Enhanced Oral Bioavailability of Aripiprazole-Loaded Solid Self-microemulsifying Drug Delivery System

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The present study pursued the systematic development of a stable solid self-emulsifying drug delivery system (SMEDDS) of an atypical antipsychotic drug, aripiprazole (APZ), which exhibits poor aqueous solubility and undergoes extensive p-glycoprotein efflux and hepatic metabolism. Liquid SMEDDS excipients were selected on the basis of solubility studies, and the optimum ratio of surfactant/co-surfactant was determined using pseudo-ternary phase diagrams. The prepared formulations were subjected to in vitro characterization studies to facilitate the selection of optimum liquid SMEDD formulation containing 30% Labrafil® M 1944 CS, 46.7% Cremophor® EL and 23.3% PEG 400 which were further subjected to solidification using maltodextrin as a hydrophilic carrier. The optimized solid SMEDDS was extensively evaluated for stability under accelerated conditions, dissolution at various pH and pharmacokinetic profile. Solid-state attributes of the optimized solid SMEDDS indicated a marked reduction in crystallinity of APZ and uniform adsorption of liquid SMEDDS. Stability study of the solid SMEDDS demonstrated that the developed formulation retained its stability during the accelerated storage conditions. Both the optimized liquid and solid SMEDDS exhibited enhanced dissolution rate which was furthermore independent of the pH of the dissolution medium. Oral bioavailability studies in Sprague-Dawley rats confirmed quicker and greater extent of absorption with solid SMEDDS as evident from the significant reduction in Tmax in case of solid SMEDDS (0.83 ± 0.12 h) as compared with commercial tablet (3.33 ± 0.94 h). The results of the present investigation indicated the development of a stable solid SMEDDS formulation of APZ with enhanced dissolution and absorption attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Whiteford HA, Ferrari AJ, Degenhardt L, Feigin V, Vos T. The global burden of mental, neurological and substance use disorders: an analysis from the Global Burden of Disease Study. PLoS One. 2015;10(2):e0116820.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Mossaheb N, Kaufmann RM. Role of aripiprazole in treatment-resistant schizophrenia. Neuropsychiatr Dis Treat. 2012;8:235–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xu Y, Liu X, Lian R, Zheng S, Yin Z, Lu Y, et al. Enhanced dissolution and oral bioavailability of aripiprazole nanosuspensions prepared by nanoprecipitation/homogenization based on acid–base neutralization. Int J Pharm. 2012;438(1–2):287–95.

    Article  CAS  PubMed  Google Scholar 

  4. Mihajlovic T, Kachrimanis K, Graovac A, Djuric Z, Ibric S. Improvement of aripiprazole solubility by complexation with (2-hydroxy) propyl-β-cyclodextrin using spray drying technique. AAPS PharmSciTech. 2012;13(2):623–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Borbás E, Balogh A, Bocz K, Müller J, Kiserdei É, Vigh T, et al. In vitro dissolution-permeation evaluation of an electrospun cyclodextrin-based formulation of aripiprazole using μFlux™. Int J Pharm. 2015;491(1–2):180–9.

    Article  PubMed  CAS  Google Scholar 

  6. Jamróz W, Kurek M, Łyszczarz E, Szafraniec J, Knapik-Kowalczuk J, Syrek K, et al. 3D printed orodispersible films with Aripiprazole. Int J Pharm. 2017;533(2):413–20.

    Article  PubMed  CAS  Google Scholar 

  7. Silki, Sinha VR. Enhancement of in vivo efficacy and oral bioavailability of aripiprazole with solid lipid nanoparticles. AAPS PharmSciTech. 2018;19(3):1264–73.

    Article  CAS  PubMed  Google Scholar 

  8. McFall H, Sarabu S, Shankar V, Bandari S, Murthy SN, Kolter K, et al. Formulation of aripiprazole-loaded pH-modulated solid dispersions via hot-melt extrusion technology: in vitro and in vivo studies. Int J Pharm. 2019;554:302–11.

    Article  CAS  PubMed  Google Scholar 

  9. Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58(3):173–82.

    Article  PubMed  CAS  Google Scholar 

  10. Pouton CW, Porter CJH. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev. 2008;60(6):625–37.

    Article  CAS  PubMed  Google Scholar 

  11. Hauss DJ. Oral lipid-based formulations. Adv Drug Deliv Rev. 2007;59(7):667–76.

    Article  CAS  PubMed  Google Scholar 

  12. Dokania S, Joshi AK. Self-microemulsifying drug delivery system (SMEDDS) – challenges and road ahead. Drug Deliv. 2015;22(6):675–90.

    Article  CAS  PubMed  Google Scholar 

  13. Quan G, Wu Q, Zhang X, Zhan Z, Zhou C, Chen B, et al. Enhancing in vitro dissolution and in vivo bioavailability of fenofibrate by solid self-emulsifying matrix combined with SBA-15 mesoporous silica. Colloids Surf B. 2016;141:476–82.

    Article  CAS  Google Scholar 

  14. Beg S, Katare OP, Saini S, Garg B, Khurana RK, Singh B. Solid self-nanoemulsifying systems of olmesartan medoxomil: formulation development, micromeritic characterization, in vitro and in vivo evaluation. Powder Technol. 2016;294:93–104.

    Article  CAS  Google Scholar 

  15. Ahsan M, Verma P. Enhancement of in vitro dissolution and pharmacodynamic potential of olanzapine using solid SNEDDS. J Pharm Investig. 2017;48:269–78.

    Article  CAS  Google Scholar 

  16. Tan A, Rao S, Prestidge CA. Transforming lipid-based oral drug delivery systems into solid dosage forms: an overview of solid carriers, physicochemical properties, and biopharmaceutical performance. Pharm Res. 2013;30(12):2993–3017.

    Article  CAS  PubMed  Google Scholar 

  17. Beg S, Jena SS, Patra CN, Rizwan M, Swain S, Sruti J, et al. Development of solid self-nanoemulsifying granules (SSNEGs) of ondansetron hydrochloride with enhanced bioavailability potential. Colloids Surf B. 2013;101:414–23.

    Article  CAS  Google Scholar 

  18. Sandeep K, Induri M, Sudhakar M. Validated spectrophotometric quantification of aripiprazole in pharmaceutical formulations by using multivariate technique. Adv Pharm Bull. 2013;3(2):469–72.

    PubMed  PubMed Central  Google Scholar 

  19. Singh D, Tiwary AK, Bedi N. Canagliflozin loaded SMEDDS: formulation optimization for improved solubility, permeability and pharmacokinetic performance. J Pharm Investig. 2019;49(1):67–85.

    Article  CAS  Google Scholar 

  20. Date AA, Desai N, Dixit R, Nagarsenker M. Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances. Nanomedicine. 2010;5(10):1595–616.

    Article  CAS  PubMed  Google Scholar 

  21. Brime B, Moreno MA, Frutos G, Ballesteros MP, Frutos P. Amphotericin B in oil–water lecithin-based microemulsions: formulation and toxicity evaluation. J Pharm Sci. 2002;91(4):1178–85.

    Article  CAS  PubMed  Google Scholar 

  22. Singh A, Singh V, Rawat G, Juyal D. Self-emulsifying systems: a review. Asian J Pharm. 2015;9(1):13.

    Article  CAS  Google Scholar 

  23. Madagul JK, Parakh DR, Kumar RS, Abhang RR. Formulation and evaluation of solid self-microemulsifying drug delivery system of chlorthalidone by spray drying technology. Dry Technol. 2017;35(12):1433–49.

    Article  CAS  Google Scholar 

  24. Patel MM, Patel RJ. Linagliptin loaded solid-SMEEDS for enhanced solubility and dissolution: formulation development and optimization by D-optimal design. J Drug Deliv Ther. 2019;9(2):47–56.

    Article  CAS  Google Scholar 

  25. Marszall L. Cloud point and emulsion inversion point. Fette Seifen Anstrichmittel. 1977;79(1):41–4.

    Article  CAS  Google Scholar 

  26. Cao B, Xu H, Mao C. Transmission electron microscopy as a tool to image bio-inorganic nanohybrids: the case of phage-gold nanocomposites. Microsc Res Tech. 2011;74(7):627–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Singh H, Nathani S, Singh N, Roy P, Paul S, Sohal HS, et al. Development and characterization of solid-SNEDDS formulation of DHA using hydrophilic carrier with improved shelf life, oxidative stability and therapeutic activity. J Drug Deliv Sci Tec. 2019;54:101326.

    Article  CAS  Google Scholar 

  28. Choudhari Y, Reddy U, Monsuur F, Pauly T, Hoefer H, McCarthy W. Comparative evaluation of porous silica based carriers for lipids and liquid drug formulations. Open Mater Sci J. 2014. https://doi.org/10.2478/mesbi-2014-0004.

  29. Singh D, Tiwary AK, Bedi N. Role of porous carriers in the biopharmaceutical performance of solid SMEDDS of canagliflozin. Recent Pat Drug Deliv Formul. 2018;12(3):179–98.

    Article  CAS  PubMed  Google Scholar 

  30. Singh D, Singh AP, Singh D, Kesavan AK, Arora S, Tiwary AK, et al. Enhanced oral bioavailability and anti-diabetic activity of canagliflozin through a spray dried lipid based oral delivery: a novel paradigm. DARU. 2020;28:191–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vadlamudi HC, Yalavarthi PR, Rao MVB, Rasheed A, Tejeswari T. In vitro characterization studies of self-microemulsified bosentan systems. Drug Dev Ind Pharm. 2017;43(6):989–95.

    Article  CAS  PubMed  Google Scholar 

  32. Anand O, Yu LX, Conner DP, Davit BM. Dissolution testing for generic drugs: an FDA perspective. AAPS J. 2011;13(3):328–35.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kalaichelvi R, Thangabalan B, Rao DS. Validated RP-HPLC method for analysis of aripiprazole in a formulation. E-J Chem. 2010;7(3):827–32.

    Article  CAS  Google Scholar 

  34. Gao ZG, Choi HG, Shin HJ, Park KM, Lim SJ, Hwang KJ, et al. Physicochemical characterization and evaluation of a microemulsion system for oral delivery of cyclosporin A. Int J Pharm. 1998;161(1):75–86.

    Article  CAS  Google Scholar 

  35. Xi J, Chang Q, Chan CK, Meng ZY, Wang GN, Sun JB, et al. Formulation development and bioavailability evaluation of a self-nanoemulsified drug delivery system of oleanolic acid. AAPS PharmSciTech. 2009;10(1):172–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Resende KX, Corrêa MA, Oliveira AG, Scarpa MV. Effect of cosurfactant on the supramolecular structure and physicochemical properties of non-ionic biocompatible microemulsions. Rev Bras Cienc Farm. 2008;44(1):35–42.

    Article  CAS  Google Scholar 

  37. Jaiswal P, Aggarwal G, Harikumar SL, Singh K. Development of self-microemulsifying drug delivery system and solid-self-microemulsifying drug delivery system of telmisartan. Int J Pharm Investig. 2014;4(4):195–206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Mohajeri E, Noudeh GD. Effect of temperature on the critical micelle concentration and micellization thermodynamic of nonionic surfactants: polyoxyethylene sorbitan fatty acid esters. J Chem. 2012;9(4):2268–74.

    CAS  Google Scholar 

  39. Subudhi BB, Mandal S. Self-microemulsifying drug delivery system: formulation and study intestinal permeability of ibuprofen in rats. J Pharm. 2013. https://doi.org/10.1155/2013/328769.

  40. Čerpnjak K, Zvonar A, Vrečer F, Gašperlin M. Development of a solid self-microemulsifying drug delivery system (SMEDDS) for solubility enhancement of naproxen. Drug Dev Ind Pharm. 2015;41(9):1548–57.

    Article  PubMed  CAS  Google Scholar 

  41. McClements DJ, Rao J. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr. 2011;51(4):285–330.

    Article  CAS  PubMed  Google Scholar 

  42. McClements DJ. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter. 2012;8(6):1719–29.

    Article  CAS  Google Scholar 

  43. Redzuan M, Bustami Effendi TJ, Majeed A. Enhanced oral bioavailability of astaxanthin with droplet size reduction. Food Sci Technol Res. 2012;18:549–54.

    Google Scholar 

  44. Fagir W, Hathout RM, Sammour OA, ElShafeey AH. Self-microemulsifying systems of Finasteride with enhanced oral bioavailability: multivariate statistical evaluation, characterization, spray-drying and in vivo studies in human volunteers. Nanomedicine. 2015;10(22):3373–89.

    Article  CAS  PubMed  Google Scholar 

  45. Van Speybroeck M, Williams HD, Nguyen TH, Anby MU, Porter CJH, Augustijns P. Incomplete desorption of liquid excipients reduces the in vitro and in vivo performance of self-emulsifying drug delivery systems solidified by adsorption onto an inorganic mesoporous carrier. Mol Pharm. 2012;9(9):2750–60.

    Article  PubMed  CAS  Google Scholar 

  46. Li L, Yi T, Lam C. Effects of spray-drying and choice of solid carriers on concentrations of Labrasol® and Transcutol® in solid self-microemulsifying drug delivery systems (SMEDDS). Molecules. 2013;18:545–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kutza C, Metz H, Kutza J, Syrowatka F, Mäder K. Toward a detailed characterization of oil adsorbates as “solid liquids.”. Eur J Pharm Biopharm. 2013;84(1):172–82.

    Article  CAS  PubMed  Google Scholar 

  48. Oh DH, Kang JH, Kim DW, Lee BJ, Kim JO, Yong CS, et al. Comparison of solid self-microemulsifying drug delivery system (solid SMEDDS) prepared with hydrophilic and hydrophobic solid carrier. Int J Pharm. 2011;420(2):412–8.

    Article  CAS  PubMed  Google Scholar 

  49. Marasini N, Tran TH, Poudel BK, Choi HG, Yong CS, Kim JO. Statistical modeling, optimization and characterization of spray-dried solid self-microemulsifying drug delivery system using design of experiments. Chem Pharm Bull. 2013;61(2):184–93.

    Article  CAS  Google Scholar 

  50. Mokale V, Naik S, Khatal T, Sonawane SH, Potoroko I. 13-Formulation development and in vitro multimedia drug release study of solid self-microemulsifying drug delivery system of ketoconazole for enhanced solubility and pH-independent dissolution profile. In: Sonawane SH, Bhanvase BA, Sivakumar M, editors. Encapsulation of active molecules and their delivery system: Elsevier; 2020. p. 211–31.

  51. Anderson G, Scott M. Determination of product shelf life and activation energy for five drugs of abuse. Clin Chem. 1991;37(3):398–402.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang Y, Huo M, Zhou J, Xie S. PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Prog Biomed. 2010;99(3):306–14.

    Article  Google Scholar 

  53. Li F, Hu R, Wang B, Gui Y, Cheng G, Gao S, et al. Self-microemulsifying drug delivery system for improving the bioavailability of huperzine A by lymphatic uptake. Acta Pharm Sin B. 2017;7(3):353–60.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Sun Pharmaceutical Industries Ltd., (Jammu, India) for their generosity by providing gift sample of aripiprazole. The authors acknowledge University Grants Commission (UGC), New Delhi, and Department of Science and Technology (DST), Government of India for UPE and CPEPA schemes for strengthening infrastructure of Guru Nanak Dev University, Amritsar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neena Bedi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, S., Singh, D., Sharma, R. et al. pH-Independent Dissolution and Enhanced Oral Bioavailability of Aripiprazole-Loaded Solid Self-microemulsifying Drug Delivery System. AAPS PharmSciTech 22, 24 (2021). https://doi.org/10.1208/s12249-020-01882-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01882-y

KEY WORDS

Navigation