Skip to main content
Log in

Acid-Liable Cleavage of Doxorubicin@Plunoric-Carbon Dots in Multiplexed Bioimaging and Drug Delivery

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This study reports the generation of novel, aqueous-dispersible plunoric-CD nanoconjugates encapsulating doxorubicin (Dox). The fluorescent CD were conjugated with plunoric F127 to form biocompatible delivery matrix and were further loaded with fluorescent Dox molecule. The resulting particles were analyzed for multiplexed bioimaging and targeted drug delivery. Physicochemical and optical characterization demonstrated discrete fluorescence from CD (blue emission) and Dox (orange emission) counterparts. In vitro drug release profile signifies higher and rapid release of Dox from Dox@Plu-CD under acidic conditions compared to physiological pH. Thus, the acid liable Dox@Plu-CD linkage can easily break in the cytosol of tumor cells because of low pH compared to normal cells thus conferring minimal damage to healthy cells. Moreover, results form in vitro cell viability assay suggest the cyto-compatibility of Plu-CD delivery matrix to HEK293 and HeLa cell lines. However, Dox@Plu-CD induced cell death and morphological alterations in HeLa cell lines, signifying pH-responsive effect of the prepared complex. Confocal imaging signified that Dox@Plu-CD effectively penetrates HeLa cells, and the released Dox binds to the cell nucleus and induces oxidative stress. The prepared Dox@Plu-CD thus behaved as efficient fluorescent probes allowing multiplexed bioimaging (blue and orange) of HeLa cells along with improved therapeutic potential.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Dox:

Doxorubicin

Plu:

Plunoric

CD:

Carbon dots

ROS:

Reactive oxygen species

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

FBS:

Fetal bovine serum

DLS:

Dynamic light scattering

NCCS:

National Centre for Cell Science

Rh :

Hydrodynamic radius

PEG:

Polyethylene glycol

PBS:

Phosphate-buffered saline

DCFDA:

2′,7′-Dichlorofluorescein-diacetate

RPMI:

Roswell Park Memorial Institute Medium

References

  1. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56:185–229. https://doi.org/10.1124/pr.56.2.6.

    Article  CAS  PubMed  Google Scholar 

  2. Pommier Y, Leteurtre Y, Fesen MR, Fujimori A, Bertrand R, Solary E, et al. Cellular determinants of sensitivity and resistance to DNA topoisomerase inhibitors. Cancer Investig. 1994;12:530–42. https://doi.org/10.3109/07357909409021413.

  3. Upadhayay KK, Bhatt AN, Mishra AK, Dwarakanath BS, Jain S, Schatz C, Le Meins JF, Farooque A, Chandraiah G, Jain AK, Misra A, Lecommandoux S. The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly (γ-benzyl L-glutamate)-b-hyaluronanpolymersomes. Biomaterials. 2010; 31: 2882–2892. https://doi.org/10.1016/j.biomaterials.2009.12.043.

  4. Mohan P, Rapoport N. Doxorubicin as a molecular nanotheranostic agent: effect of doxorubicin encapsulation in micelles or nanoemulsions on the ultrasound-mediated intracellular delivery and nuclear trafficking. Mol Pharm. 2010;7(6):1959–73. https://doi.org/10.1021/mp100269f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lankelma J, Dekker H, Luque FR, Luykx S, Hoekman K, der Valk van P, et al. Doxorubicin gradients in human breast cancer. Clin Cancer Res. 1999;5:1703–1707.

  6. Devy L, de Groot FMH, Blacher S, Hajitou A, Beusker PH, Scheeren HW, Foidart JM, Noel A. Plasmin-activated doxorubicin prodrugs containing a spacer reduce tumor growth and angiogenesis without systemic toxicity. FASEB J 2004; 18: 565–567. https://doi.org/10.1096/fj.03-0462fje.

  7. Chatterjee K, Zhang J, Honbo N, Karliner JS. Doxorubicin cardiomyopathy. Cardiology. 2010;115:155–62. https://doi.org/10.1159/000265166.

    Article  CAS  PubMed  Google Scholar 

  8. Shaikh AY, Shih JA. Chemotherapy-induced cardiotoxicity. Curr Heart Fail Rep. 2012;9(2):117–27. https://doi.org/10.1007/s11897-012-0083-y.

    Article  CAS  PubMed  Google Scholar 

  9. Hruby M, Konak C, Ulbrich K. Polymeric micellar pH-sensitive drug delivery system for doxorubicin. J Control Release. 2005;103:137–48. https://doi.org/10.1016/j.jconrel.2004.11.017.

    Article  CAS  PubMed  Google Scholar 

  10. Lee Y, Park SY, Mok H, Park TG. Synthesis, characterization, antitumor activity of pluronic mimicking copolymer micelles conjugated with doxorubicin via acid-cleavable linkage. Bioconjug Chem. 2008;19:525–31. https://doi.org/10.1021/bc700382z.

    Article  CAS  PubMed  Google Scholar 

  11. Yoo HS, Park TG. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA–PEG block copolymer. J Control Release. 2001;70:63–70. https://doi.org/10.1016/S0168-3659(00)00340-0.

    Article  CAS  PubMed  Google Scholar 

  12. Lacko AG, Sabnis NA, Nagarajan B, McConathy WJ. HDL as a drug and nucleic acid delivery vehicle. Front Pharmacol. 2015;6. https://doi.org/10.3389/fphar.2015.00247.

  13. Wang F, Wang Y, Dou S, Xiong M, Sun T, Wang J. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano. 2011:53679–92. https://doi.org/10.1021/nn200007z.

  14. Kabanov AV, Batrakova EV, Alakhov VY. Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release. 2002;82(2):189–212. https://doi.org/10.1016/S0168-3659(02)00009-3.

    Article  CAS  PubMed  Google Scholar 

  15. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov;68(6):394–424.

    Article  Google Scholar 

  16. Sarnath D, Khanna A. Current status of cancer burden: global and Indian scenario. J Biomed Res. 2014;1(1):1–5.

    Article  Google Scholar 

  17. Chen N, He Y, Su Y, Li X, Huang Q, Wang H, et al. The cytotoxicity of cadmium-based quantum dots. Biomaterials. 2012;33:1238–44. https://doi.org/10.1016/j.biomaterials.2011.10.070.

  18. Priyadarshini E, Rawat K. Au@ carbon dot nanoconjugates as a dual mode enzyme-free sensing platform for cholesterol. J Mater Chem B. 2017;5(27):5425–32. https://doi.org/10.1039/C7TB01345K.

    Article  CAS  PubMed  Google Scholar 

  19. Kang EB, Sharker SM, In I, Park SY. Plunoric mimicking florescent carbon nanoparticles conjugated with doxorubicin via acid-cleavable linkage for tumor-targeted drug delivery and bioimaging. J Ind Eng Chem. 2016;43:150–7. https://doi.org/10.1016/j.jiec.2016.08.001.

    Article  CAS  Google Scholar 

  20. Chen FH, Zhang LM, Chen QT, Zhang Y, Zhang ZJ. Synthesis of a novel magnetic drug delivery system composed of doxorubicin-conjugated Fe3O4 nanoparticle cores and a PEG-functionalized porous silica shell. Chem Commun. 2010;46:8633–5. https://doi.org/10.1039/C0CC02577A.

    Article  CAS  Google Scholar 

  21. Chen FH, Gao Q, Ni JZ. The grafting and release behaviour of doxorubicin from Fe3O4@ SiO2 core–shell structure nanoparticles via an acid cleaving amide bond: the potential for magnetic targeting drug delivery. Nanotechnology. 2008;19:165103. https://doi.org/10.1088/0957-4484/19/16/165103.

    Article  CAS  PubMed  Google Scholar 

  22. Du JZ, Du XJ, Mao CQ, Wang J. Tailor-made dual pH-sensitive polymer doxorubicin nanoparticles for efficient anticancer drug delivery. J Am Chem Soc. 2011;133:17560–3. https://doi.org/10.1021/ja207150n.

    Article  CAS  PubMed  Google Scholar 

  23. Akbarzadeh A, Samiei M, Joo SW, Anzaby M, Hanifehpour Y, Nasrabadi HT, et al. Synthesis, characterization and in vitro studies of doxorubicin-loaded magnetic nanoparticles grafted to smart copolymers on A549 lung cancer cell line. J Nanobiotechnol. 2012;10:46. https://doi.org/10.1186/1477-3155-10-46.

  24. KievitFM WFY, Fang C, Mok H, Wang K, Silber JR, Ellenbogen RG, et al. Doxorubicin loaded iron oxide nanoparticles overcome multidrugresistance in cancer in vitro. J Control Release: Off J Control Release Soc. 2011;152:76–83. https://doi.org/10.1016/j.jconrel.2011.01.024.

  25. Dreis S, Rothweiler F, Michaelis M, Cinat J Jr, Kreuter J, Langer K. Preparation, characterisation and maintenance of drug efficacy ofdoxorubicin-loaded human serum albumin (HSA) nanoparticles. Int J Pharm. 2007;341:207–14. https://doi.org/10.1016/j.ijpharm.2007.03.036.

    Article  CAS  PubMed  Google Scholar 

  26. Gautier J, Munnier E, Paillard A, et al. A pharmaceutical study of doxorubicin-loaded PEGylated nanoparticles for magnetic drug targeting. Int J Pharm. 2012;423:16–25. https://doi.org/10.1016/j.ijpharm.2011.06.010.

  27. SemkinaA, Abakumov M, Grinenkoc N, Abakumovd A, Skorikovb A, Mironovae E, Davydova G, Majouga AG, Nukolov N, Kabanov A, Chekhonin V. Core–shell–corona doxorubicin-loaded superparamagnetic Fe3O4nanoparticles for cancer theranostics. Colloids and Surfaces B: Biointerfaces. 2015; 136, 1073–1080. https://doi.org/10.1016/j.colsurfb.2015.11.009.

  28. Kim D, Jeong YY, Jon SA. Drug-loaded aptamer−gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano. 2010;4:3689–96. https://doi.org/10.1021/nn901877h.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou S, Starkov A, Froberg MK, Leino RL, Wallace KB. Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Res. 2001;61:771–7.

    CAS  PubMed  Google Scholar 

  30. Mizutani H, Tada-Oikawa S, Hiraku Y, Kojima M, Kawanishi S. Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide. Life Sci. 2005;76:1439–53. https://doi.org/10.1016/j.lfs.2004.05.040.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

EP is thankful to Department of Science and Technology-Science and Engineering Board, New Delhi, India, for fellowship under National Postdoctoral Scheme (PDF/2017/000024). Authors are grateful to Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi, for confocal imaging studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulraj Rajamani.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyadarshini, E., Rajamani, P. Acid-Liable Cleavage of Doxorubicin@Plunoric-Carbon Dots in Multiplexed Bioimaging and Drug Delivery. AAPS PharmSciTech 21, 322 (2020). https://doi.org/10.1208/s12249-020-01871-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01871-1

KEY WORDS

Navigation