Skip to main content

Advertisement

Log in

Sialic Acid Conjugate–Modified Liposomal Dexamethasone Palmitate Targeting Neutrophils for Rheumatoid Arthritis Therapy: Influence of Particle Size

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Many anti-inflammatory therapies targeting neutrophils have been developed so far. A sialic acid (SA)–modified liposomal (SAL) formulation, based on the high expression of L-selectin in peripheral blood neutrophils (PBNs) and SA as its targeting ligand, has proved to be an effective neutrophil-mediated drug delivery system targeting rheumatoid arthritis (RA). The objective of this study was to investigate the influence of particle size of drug-carrying SALs transported and delivered by neutrophils on their anti-RA effect. Dexamethasone palmitate–loaded SALs (DP-SALs) of different particle sizes (300.2 ± 5.5 nm, 150.3 ± 4.3 nm, and 75.0 ± 3.9 nm) were prepared with DP as a model drug. Our study indicated that DP-SALs could efficiently target PBNs, with larger liposomes leading to higher drug accumulation in cells. However, a high intake of large DP-SALs by PBNs inhibited their migration ability and capacity to release the payload at the target site. In contrast, small DP-SALs (75.0 ± 3.9 nm) could maintain the drug delivery potential of PBNs, leading to their efficient accumulation at the inflammatory site, where PBNs would be excessively activated to form neutrophil extracellular traps along with efficient payload release (small DP-SALs) and finally to induce excellent anti-RA effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Klareskog L, Catrina AI, Paget S. Rheumatoid arthritis. Br Med J. 1950;373(9664):659–72.

    Google Scholar 

  2. Damiati L, Bahlas S, Pushparaj P. AB1254-HPRDecoding the Association of Celiac Disease in Rheumatoid Arthritis Patients Using Clinical Risk Factors. Ann Rheum Dis. 2015;74(Suppl 2):1354.1.

    Article  Google Scholar 

  3. Conigliaro P, Chimenti MS, Triggianese P, Sunzini F, Novelli L, Perricone C, et al. Autoantibodies in inflammatory arthritis. Autoimmun Rev. 2016;15(7):673–83.

    Article  CAS  PubMed  Google Scholar 

  4. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003;423(6937):356–61.

    Article  CAS  PubMed  Google Scholar 

  5. Kutlay S, Küükdeveci AA, Gnül D, Tennant A. Adaptation and validation of the Turkish version of the Rheumatoid Arthritis Quality of Life Scale. Rheumatol Int. 2003;23(1):21.

    Article  PubMed  Google Scholar 

  6. Tijhuis GJ, de Jong Z, Zwinderman AH, Zuijderduin WM, Jansen LM, Hazes JM, et al. The validity of the Rheumatoid Arthritis Quality of Life (RAQoL) questionnaire. Rheumatology. 2001;10:1112–9.

    Article  Google Scholar 

  7. Pollard L, Choy E, Scott D. The consequences of rheumatoid arthritis: Quality of life measures in the individual patient. Clin Exp Rheumatol. 2005;23(5):43–52.

    Google Scholar 

  8. Lorscheider M, Tsapis N, Urrehman M, Gaudin F, Stolfa I, Abreu S, et al. Dexamethasone palmitate nanoparticles: An efficient treatment for rheumatoid arthritis. J Control Release. 2019;296:179–89.

    Article  CAS  PubMed  Google Scholar 

  9. Wang X, Feng Y, Fu J, Wu C, He B, Zhang H, et al. A lipid micellar system loaded with dexamethasone palmitate alleviates rheumatoid arthritis. AAPS PharmSciTech. 2019;20(8):316.

    Article  PubMed  Google Scholar 

  10. Saag KG, Koehnke R, Caldwell JR, Brasington R, Burmeister LF, Zimmerman B, et al. Low dose long-term corticosteroid therapy in rheumatoid arthritis: an analysis of serious adverse events. Am J Med. 1994;96(2):115–23.

    Article  CAS  PubMed  Google Scholar 

  11. Cascao R, Rosario H, Souto-Carneiro M, Fonseca J. Neutrophils in rheumatoid arthritis: more than simple final effectors. Autoimmun Rev. 2010;9(8):531–5.

    Article  CAS  PubMed  Google Scholar 

  12. Luo X, Hu L, Zheng H, Liu M, Liu X, Li C, et al. Neutrophil-mediated delivery of pixantrone-loaded liposomes decorated with poly (sialic acid)–octadecylamine conjugate for lung cancer treatment. Drug Deliv. 2018;25(1):1200–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ding J, Zhao D, Hu Y, Liu M, Liao X, Zhao B, et al. Terminating the renewal of tumor-associated macrophages: A sialic acid-based targeted delivery strategy for cancer immunotherapy. Int J Pharm. 2019;571:118706.

    Article  CAS  PubMed  Google Scholar 

  14. Han Y, Zhao R, Xu F. Neutrophil-based delivery systems for nanotherapeutics. Small. 2018;14(42):1801674.

    Article  Google Scholar 

  15. Ma X-l, Buerke M, Albertine KH, Kishimoto TK, Lefer AM. Monoclonal antibody to L-selectin attenuates neutrophil accumulation and protects ischemic reperfused cat myocardium. Circulation. 1993;88(2):649–58.

    Article  CAS  PubMed  Google Scholar 

  16. Wang L, Fuster M, Sriramarao P, Esko JD. Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat Immunol. 2005;6(9):902–10.

    Article  CAS  PubMed  Google Scholar 

  17. Walcheck B, Moore KL, Mcever RP, Kishimoto TK. Neutrophil-neutrophil interactions under hydrodynamic shear stress involve L-selectin and PSGL-1. A mechanism that amplifies initial leukocyte accumulation of P-selectin in vitro. J Clin Investig. 1996;98(5):1081–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Galustian LC, Komba AM, Ishida S, Kiso H, Feizi M. Sialyl-Lewis(x) sequence 6-O-sulfated at N-acetylglucosamine rather than at galactose is the preferred ligand for L-selectin and de-N-acetylation of the sialic acid enhances the binding strength. Biochem Biophys Res Commun. 1997;240(3):748–51.

    Article  CAS  PubMed  Google Scholar 

  19. Norgard KE, Han H, Powell L, Kriegler M, Varki A, Varki NM. Enhanced interaction of L-selectin with the high endothelial venule ligand via selectively oxidized sialic acids. Proc Natl Acad Sci U S A. 1993;90(3):1068–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu L, Luo X, Zhou S, Zhu J, Song Y. Neutrophil-mediated delivery of dexamethasone palmitate-loaded liposomes decorated with a sialic acid conjugate for rheumatoid arthritis treatment. Pharm Res. 2019;36(7):97.

  22. Rudt S, Müller R. In vitro phagocytosis assay of nano-and microparticles by chemiluminescence. III. Uptake of differently sized surface-modified particles, and its correlation to particle properties and in vivo distribution. Eur J Pharm Sci. 1993;1(1):31–9.

    Article  Google Scholar 

  23. Wang Q, Jiang J, Chen W, Jiang H, Zhang Z, Sun X. Targeted delivery of low-dose dexamethasone using PCL–PEG micelles for effective treatment of rheumatoid arthritis. J Control Release. 2016;230:64–72.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang X, Goncalves R, Mosser DM. The isolation and characterization of murine macrophages. Curr Protoc Immunol. 2008;83(1):14.1. 1–.1.

    Article  Google Scholar 

  25. Luo X, Li J, Guo L, Cheng X, Zhang T, Deng Y. Preparation of berberine hydrochloride long-circulating liposomes by ionophore A23187-mediated ZnSO4 gradient method. Asian J Pharm Sci. 2013;8(4):261–6.

    Article  Google Scholar 

  26. Xue J, Zhao Z, Zhang L, Xue L, Zhang C. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat Nanotechnol. 2017;12(7):692.

    Article  CAS  PubMed  Google Scholar 

  27. Li C, Qiu Q, Liu M, Liu X, Song Y. Sialic Acid-Conjugate Modified Liposomes Targeting Neutrophils for Improved Tumor Therapy. Biomater Sci. 2020;8(8):2189–2201.

  28. Okeke EB, Louttit C, Fry C, Najafabadi AH, Moon JJ. Inhibition of neutrophil elastase prevents neutrophil extracellular trap formation and rescues mice from endotoxic shock. Biomaterials. 2020;238:119836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Landoni VI, Chiarella P, Martire-Greco D, Schierloh P, Van-Rooijen N, Rearte B, et al. Tolerance to lipopolysaccharide promotes an enhanced neutrophil extracellular traps formation leading to a more efficient bacterial clearance in mice. Clin Exp Immunol. 2012;168(1):153–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Anderson R, Franch A, Castell M, Perez-Cano FJ, Bräuer R, Pohlers D, et al. Liposomal encapsulation enhances and prolongs the anti-inflammatory effects of water-soluble dexamethasone phosphate in experimental adjuvant arthritis. Arthritis Res Ther. 2010;12(4):R147.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yang M, Feng X, Ding J, Chang F, Chen X. Nanotherapeutics relieve rheumatoid arthritis. J Control Release. 2017;252:108–24.

    Article  CAS  PubMed  Google Scholar 

  32. Raffler NA, Rivera-Nieves J, Ley K. L-selectin in inflammation, infection and immunity. Drug Discov Today Ther Strateg. 2005;2(3):213–20.

    Article  Google Scholar 

  33. Ruan J, Song H, Li C, Bao C, Fu H, Wang K, et al. DiR-labeled embryonic stem cells for targeted imaging of in vivo gastric cancer cells. Theranostics. 2012;2(6):618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cox G, Austin RC. Dexamethasone-induced suppression of apoptosis in human neutrophils requires continuous stimulation of new protein synthesis. J Leukoc Biol. 1997;61(2):224.

    Article  CAS  PubMed  Google Scholar 

  35. Roets E, Burvenich C, Diez-Fraile A, Noordhuizen-Stassen E. Evaluation of the role of endotoxin and cortisol on modulation of CD18 adhesion receptors in cows with mastitis caused by Escherichia coli. Am J Vet Res. 1999;60(5):534–40.

    CAS  PubMed  Google Scholar 

  36. Maneechotesuwan K, Essilfie-Quaye S, Meah S, Kelly C, Kharitonov SA, Adcock IM, et al. Formoterol attenuates neutrophilic airway inflammation in asthma. Chest. 2005;128(4):1936–42.

    Article  CAS  PubMed  Google Scholar 

  37. Bator JM, Weitzberg M, Burch RM. N-[9H-(2, 7-dimethylfluorenyl-9-methoxy) carbonyl]-l-leucine, NPC 15669, prevents neutrophil adherence to endothelium and inhibits CD 11b/CD 18 upregulation. Immunopharmacology. 1992;23(2):139–49.

    Article  CAS  PubMed  Google Scholar 

  38. Filep JG, Delalandre A, Payette Y, Földes-Filep E. Glucocorticoid receptor regulates expression of L-selectin and CD11/CD18 on human neutrophils. Circulation. 1997;96(1):295–301.

    Article  CAS  PubMed  Google Scholar 

  39. Kinne RW, Stuhlmüller B, Burmester GR. Cells of the synovium in rheumatoid arthritis. Macrophages. Arthritis Res Ther. 2007;9(6):1–16.

    Article  Google Scholar 

  40. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27(1):451.

    Article  CAS  PubMed  Google Scholar 

  42. Kung CC, Dai SP, Chiang H, Huang HS, Sun WH. Temporal expression patterns of distinct cytokines and M1/M2 macrophage polarization regulate rheumatoid arthritis progression. Mol Biol Rep. 2020;47(4):1–15.

    Google Scholar 

  43. Vandooren B, Noordenbos T, Ambarus C, Krausz S, Baeten D. Absence of a classically activated macrophage cytokine signature in peripheral spondylarthritis, including psoriatic arthritis. Arthritis Rheum. 2009;60(4):966–75.

    Article  CAS  PubMed  Google Scholar 

  44. Tsuneyoshi Y, Tanaka M, Nagai T, Sunahara N, Matsuyama T. Functional folate receptor beta-expressing macrophages in osteoarthritis synovium and their M1/M2 expression profiles. Scand J Rheumatol. 2012;41(2):132–40.

    Article  CAS  PubMed  Google Scholar 

  45. Luan SX, Chen XH. The glucocorticoid inhibits neutrophils formed extracellular traps (NETs) and suppresses the inflammation caused by fallopian tube staphylococcal infection. Eur Rev Med Pharmacol. 2017;21(4):855–60.

    Google Scholar 

  46. Giusti D, Bini E, Terryn C, Didier K, Jan SL, Gatouillat G, et al. NET Formation in Bullous Pemphigoid Patients With Relapse Is Modulated by IL-17 and IL-23 Interplay. Front Immunol. 2019;10:701.

  47. Tedesco S, Bolego C, Toniolo A, Nassi A, Fadini GP, Locati M et al. Phenotypic activation and pharmacological outcomes of spontaneously differentiated human monocyte-derived macrophages. Immunobiology. 2015;220(5):545–54.

  48. Tuckermann JP, Kleiman A, Mcpherson KG, Reichardt HM. Molecular mechanisms of glucocorticoids in the control of inflammation and lymphocyte apoptosis. Crit Rev Clin Lab. 2005;42(1):71.

    Article  CAS  Google Scholar 

  49. Savill JS, Wyllie AH, Henson JE, Walport MJ, Henson PM, Haslett C. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J Clin Investig. 1989;83(3):865–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Newman SL. Phagocytosis of senescent neutrophils by human monocyte-derived macrophages and rabbit inflammatory macrophages. J Exp Med. 1982;156(2):430–42.

    Article  CAS  PubMed  Google Scholar 

  51. Ravichandran KS. Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways. Immunity. 2011;35(4):445–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature. 2000;405(6782):85–90.

    Article  CAS  PubMed  Google Scholar 

  53. Liu D, Mori A, Huang L. Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes. Biochim Biophys Acta Biomembr. 1992;1104(1):95–101.

    Article  CAS  Google Scholar 

  54. Guan J, He H, Yu B, Lee LJ. Polymeric nanoparticles and nanopore membranes for controlled drug and gene delivery. In: Biomedical Nanostructures. Hoboken: Wiley-Interscience; 2007. p. 115–37.

    Chapter  Google Scholar 

  55. Franchimont DP, Galon J, Gadina M, Visconti R, O’Shea JJ. Inhibition of TH1 immune response by glucocorticoids: Dexamethasone inhibits IL12-induced stat4 phosphorylation in T lymphocytes. J Immunol. 2000;118(4):A790–A1.

    Google Scholar 

  56. Ulmansky R, Turjeman K, Baru M, Katzavian G, Harel M, Sigal A, et al. Glucocorticoids in nano-liposomes administered intravenously and subcutaneously to adjuvant arthritis rats are superior to the free drugs in suppressing arthritis and inflammatory cytokines. J Control Release. 2012;160(2):299–305.

    Article  CAS  PubMed  Google Scholar 

  57. Taylor PC, Williams RO. Combination cytokine blockade: the way forward in therapy for rheumatoid arthritis? Arthritis Rheum. 2015;67(1):14–6.

    Article  CAS  Google Scholar 

  58. Sugiyama M, Sakahara H, Sato K, Harada N, Tsukada H. Evaluation of 3′-deoxy-3′-18F-fluorothymidine for monitoring tumor response to radiotherapy and photodynamic therapy in mice. J Nucl Med. 2004;45(10):1754–8.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Number. 81973271 and 81703456) and Disruptive Technology Innovation Guidance Fund of Shenyang Pharmaceutical University (Grant Number. 51120666).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yihui Deng or Guoliang Chen.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 3662 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Yang, S., Lai, X. et al. Sialic Acid Conjugate–Modified Liposomal Dexamethasone Palmitate Targeting Neutrophils for Rheumatoid Arthritis Therapy: Influence of Particle Size. AAPS PharmSciTech 22, 16 (2021). https://doi.org/10.1208/s12249-020-01870-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01870-2

KEY WORDS

Navigation