Skip to main content
Log in

Molecular Mobility and Crystal Growth in Amorphous Binary Drug Delivery Systems: Effects of Low-Concentration Poly(Ethylene Oxide)

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Polymer additives have been widely reported to affect the crystallization of amorphous drugs, while the underlying mechanism is poorly understood. The present study aims to investigate the relationship between the crystal growth and the molecular mobility of amorphous nifedipine (NIF) in the presence and absence of low-concentration poly(ethylene oxide) (PEO). The addition of 3% w/w PEO yields approximately a 5-fold increase in the crystal growth rate of NIF in the glassy matrix and a 10-fold increase in the supercooled liquid. Broadband dielectric spectroscopy is performed to investigate the molecular mobility of amorphous pure NIF system and NIF doped with low-concentration PEO. With 3% w/w PEO, the structural relaxation time τα of amorphous NIF significantly decreases, indicating an increase in the global molecular mobility. However, the increase of the molecular mobility is insufficient to explain the 5- to 10-fold increase of the crystal growth rate at the same τα scale. Moreover, we compare the accelerating effect of PEO in NIF-PEO systems to other PEO-doped systems. The accelerating effect of low-concentration PEO on the crystal growth of amorphous drugs is found to be independent of the Flory–Huggins interaction, Tg of the drug, or the increase of the global molecular mobility. These findings suggest that an in-depth understanding regarding the effects of polymer additives on the crystallization of drugs should consider the localized mobility of the host molecules near the crystal-liquid interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Van den Mooter G. The use of amorphous solid dispersions: a formulation strategy to overcome poor solubility and dissolution rate. Drug Discov Today Technol. 2012;9(2):79–85.

    Google Scholar 

  2. Xu W, Xie H, Cao Q, Shi L, Cao Y, Zhu X, et al. Enhanced dissolution and oral bioavailability of valsartan solid dispersions prepared by a freeze-drying technique using hydrophilic polymers. Drug Deliv. 2016;23(1):41–8.

    CAS  PubMed  Google Scholar 

  3. Yan H, Chris H. Amorphous solid dispersions: utilization and challenges in drug discovery and development. J Pharm Sci. 2015;104(10):3237–58.

    Google Scholar 

  4. Schittny A, Huwyler J, Puchkov M. Mechanisms of increased bioavailability through amorphous solid dispersions: a review. Drug Deliv. 2020;27(1):110–27.

    CAS  PubMed  Google Scholar 

  5. Powell CT, Cai T, Hasebe M, Gunn EM, Gao P, Zhang G, et al. Low-concentration polymers inhibit and accelerate crystal growth in organic glasses in correlation with segmental mobility. J Phys Chem B. 2013;117(35):10334–41.

    CAS  PubMed  Google Scholar 

  6. Ishida H, Wu T, Yu L. Sudden rise of crystal growth rate of nifedipine near T(g) without and with polyvinylpyrrolidone. J Pharm Sci. 2007;96(5):1131–8.

    CAS  PubMed  Google Scholar 

  7. Kestur US, Lee H, Santiago D, Rinaldi C, Won Y, Taylor LS. Effects of the molecular weight and concentration of polymer additives, and temperature on the melt crystallization kinetics of a small drug molecule. Cryst Growth Des. 2010;10(8):3585–95.

    CAS  Google Scholar 

  8. Eerdenbrugh BV, Taylor LS. An ab initio polymer selection methodology to prevent crystallization in amorphous solid dispersions by application of crystal engineering principles. CrystEngComm. 2011;13(20):6171–8.

    Google Scholar 

  9. Kestur US, Taylor LS. Role of polymer chemistry in influencing crystal growth rates from amorphous felodipine. Cryst Eng Comm. 2010;12(8):2390–7.

    CAS  Google Scholar 

  10. Trasi NS, Taylor LS. Effect of additives on crystal growth and nucleation of amorphous flutamide. Cryst Growth Des. 2012;12(6):3221–30.

    CAS  Google Scholar 

  11. Trasi NS, Taylor LS. Effect of polymers on nucleation and crystal growth of amorphous acetaminophen. Cryst Eng Comm. 2012;14(16):5188–97.

    CAS  Google Scholar 

  12. Sato T, Taylor LS. Acceleration of the crystal growth rate of low molecular weight organic compounds in supercooled liquids in the presence of polyhydroxybutyrate. CrystEngComm. 2017;19:80–7.

    CAS  Google Scholar 

  13. Kestur US, Taylor LS. Evaluation of the crystal growth rate of felodipine polymorphs in the presence and absence of additives as a function of temperature. Cryst Growth Des. 2013;13(10):4349–54.

    CAS  Google Scholar 

  14. Zhang S, Britten JF, Chow AHL, Lee TWY. Impact of crystal structure and polymer excipients on the melt crystallization kinetics of itraconazole polymorphs. Cryst Growth Des. 2017;17(6):3433–42.

    CAS  Google Scholar 

  15. Tian B, Gao W, Tao X, Tang X, Taylor LS. Impact of polymers on the melt crystal growth rate of indomethacin polymorphs. Cryst Growth Des. 2017;17(12):6467–76.

    CAS  Google Scholar 

  16. Cai T, Zhu L, Yu L. Crystallization of organic glasses: effects of polymer additives on bulk and surface crystal growth in amorphous nifedipine. Pharm Res. 2011;28(10):2458–66.

    CAS  PubMed  Google Scholar 

  17. Huang C, Powell CT, Sun Y, Cai T, Yu L. Effect of low-concentration polymers on crystal growth in molecular glasses: a controlling role for polymer segmental mobility relative to host dynamics. J Phys Chem B. 2017;121(8):1963–71.

    CAS  PubMed  Google Scholar 

  18. Fung MH, DeVault M, Kuwata KT, Suryanarayanan R. Drug-excipient interactions: effect on molecular mobility and physical stability of ketoconazole-organic acid coamorphous systems. Mol Pharm. 2018;15(3):1052–61.

    CAS  PubMed  Google Scholar 

  19. Mistry P, Mohapatra S, Gopinath T, Vogt FG, Suryanarayanan R. Role of the strength of drug-polymer interactions on the molecular mobility and crystallization inhibition in ketoconazole solid dispersions. Mol Pharm. 2015;12(9):3339–50.

    CAS  PubMed  Google Scholar 

  20. Zhang J, Shi Q, Tao J, Peng Y, Cai T. Impact of polymer enrichment at the crystal-liquid Interface on crystallization kinetics of amorphous solid dispersions. Mol Pharm. 2019;16(3):1385–96.

    CAS  PubMed  Google Scholar 

  21. Zhang J, Shi Q, Guo M, Liu Z, Cai T. Melt crystallization of indomethacin polymorphs in the presence of poly(ethylene oxide): selective enrichment of the polymer at the crystal-liquid Interface. Mol Pharm. 2020;17(6):2064–71.

    CAS  PubMed  Google Scholar 

  22. Kothari K, Ragoonanan V, Suryanarayanan R. Influence of molecular mobility on the physical stability of amorphous pharmaceuticals in the supercooled and glassy states. Mol Pharm. 2014;11(9):3048–55.

    CAS  PubMed  Google Scholar 

  23. Kothari K, Ragoonanan V, Suryanarayanan R. The role of polymer concentration on the molecular mobility and physical stability of nifedipine solid dispersions. Mol Pharm. 2015;12(5):1477–84.

    CAS  PubMed  Google Scholar 

  24. Kothari K, Ragoonanan V, Suryanarayanan R. The role of drug-polymer hydrogen bonding interactions on the molecular mobility and physical stability of nifedipine solid dispersions. Mol Pharm. 2015;12(1):162–70.

    CAS  PubMed  Google Scholar 

  25. Mehta M, Ragoonanan V, McKenna GB, Suryanarayanan R. Correlation between molecular mobility and physical stability in pharmaceutical glasses. Mol Pharm. 2016;13(4):1267–77.

    CAS  PubMed  Google Scholar 

  26. Mehta M, Suryanarayanan R. Accelerated physical stability testing of amorphous dispersions. Mol Pharm. 2016;13(8):2661–6.

    CAS  PubMed  Google Scholar 

  27. Grzybowska K, Capaccioli S, Paluch M. Recent developments in the experimental investigations of relaxations in pharmaceuticals by dielectric techniques at ambient and elevated pressure. Adv Drug Deliv Rev. 2016;100:158–82.

    CAS  PubMed  Google Scholar 

  28. Mistry P, Suryanarayanan R. Strength of drug–polymer interactions: implications for crystallization in dispersions. Cryst Growth Des. 2016;16(9):5141–9.

    CAS  Google Scholar 

  29. Mehta M, Kothari K, Ragoonanan V, Suryanarayanan R. Effect of water on molecular mobility and physical stability of amorphous pharmaceuticals. Mol Pharm. 2016;13(4):1339–46.

    CAS  PubMed  Google Scholar 

  30. Fung MH, Suryanarayanan R. Use of a plasticizer for physical stability prediction of amorphous solid dispersions. Cryst Growth Des. 2017;17(8):4315–25.

    CAS  Google Scholar 

  31. Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed. 2010;49(36):6288–308.

    CAS  Google Scholar 

  32. Shi Q, Zhang C, Su Y, Zhang J, Zhou D, Cai T. Acceleration of crystal growth of amorphous griseofulvin by low-concentration poly(ethylene oxide): aspects of crystallization kinetics and molecular mobility. Mol Pharm. 2017;14(7):2262–72.

    CAS  PubMed  Google Scholar 

  33. Shi Q, Zhang J, Zhang C, Jiang J, Tao J, Zhou D, et al. Selective acceleration of crystal growth of indomethacin polymorphs by low-concentration poly(ethylene oxide). Mol Pharm. 2017;14(12):4694–704.

    CAS  PubMed  Google Scholar 

  34. Marsac PJ, Shamblin SL, Taylor LS. Theoretical and practical approaches for prediction of drug–polymer miscibility and solubility. Pharm Res. 2006;23:2417–26.

    CAS  PubMed  Google Scholar 

  35. Havriliak S, Negami S. A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer. 1967;8:161–210.

    CAS  Google Scholar 

  36. Madejczyk O, Kaminska E, Tarnacka M, Dulski M, Jurkiewicz K, Kaminski K, et al. Studying the crystallization of various polymorphic forms of nifedipine from binary mixtures with the use of different experimental techniques. Mol Pharm. 2017;14(6):2116–25.

    CAS  PubMed  Google Scholar 

  37. Madejczyk O, Minecka A, Kamińska E, Heczko D, Tarnacka M, Wolnica K, et al. Studying the crystal growth of selected active pharmaceutical ingredients from single- and two-component systems above and below the glass transition temperature. Cryst Growth Des. 2019;19(2):1031–40.

    CAS  Google Scholar 

  38. Gunn E, Guzei IA, Cai T, Yu L. Polymorphism of nifedipine: crystal structure and reversible transition of the metastable β polymorph. Cryst Growth Des. 2012;12(4):2037–43.

    CAS  Google Scholar 

  39. Zhu L, Wong L, Yu L. Surface-enhanced crystallization of amorphous nifedipine. Mol Pharm. 2008;5(6):921–6.

    CAS  PubMed  Google Scholar 

  40. Sun Y, Xi H, Ediger MD, Yu L. Diffusionless crystal growth from glass has precursor in equilibrium liquid. J Phys Chem B. 2008;112(3):661–4.

    CAS  PubMed  Google Scholar 

  41. Shi Q, Cai T. Fast crystal growth of amorphous griseofulvin: relations between bulk and surface growth modes. Cryst Growth Des. 2016;16(6):3279–86.

    CAS  Google Scholar 

  42. Musumeci D, Powell CT, Ediger MD, Yu L. Termination of solid-state crystal growth in molecular glasses by fluidity. J Phys Chem Lett. 2014;5(10):1705–10.

    CAS  PubMed  Google Scholar 

  43. Wang K, Sun CC. Crystal growth of celecoxib from amorphous state: polymorphism, growth mechanism, and kinetics. Cryst Growth Des. 2019;19(6):3592–600.

    CAS  Google Scholar 

  44. Vogel H. Das Temperaturabhangigkeitgesetz der Viskosität von Flüssigkeiten. J Phys Z. 1921;22:645–6.

    CAS  Google Scholar 

  45. Fulcher GS. Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc. 1925;8:339–55.

    CAS  Google Scholar 

  46. Tammann G, Hesse W. Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Z Anorg Allg Chem. 1926;156:245–57.

    CAS  Google Scholar 

  47. Sun Y, Xi H, Ediger MD, Richert R, Yu L. Diffusion-controlled and “Diffusionless” crystal growth near the glass transition temperature: relation between liquid dynamics and growth kinetics of seven ROY polymorphs. J Chem Phys. 2009;131(7):074506.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support of this work by the National Natural Science Foundation of China (Nos.81803452, 21803004) and the Natural Science Foundation of Jiangsu Province (No.BK20180273).

Funding

This study received financial support from the National Natural Science Foundation of China (Nos. 81803452, 21803004) and the Natural Science Foundation of Jiangsu Province (No. BK20180273).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qin Shi or Chen Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., Cheng, J., Li, F. et al. Molecular Mobility and Crystal Growth in Amorphous Binary Drug Delivery Systems: Effects of Low-Concentration Poly(Ethylene Oxide). AAPS PharmSciTech 21, 317 (2020). https://doi.org/10.1208/s12249-020-01869-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01869-9

KEY WORDS

Navigation