Skip to main content

Advertisement

Log in

Preparation and Biological Property Evaluation of Novel Cationic Lipid-Based Liposomes for Efficient Gene Delivery

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Novel cationic lipid-based liposomes prepared using an amphiphilic cationic lipid material, N,N-dimethyl-(N′,N′-di-stearoyl-1-ethyl)1,3-diaminopropane (DMSP), have been proposed to enhance the transfection of nucleic acids. Herein, we designed and investigated liposomes prepared using DMSP, soybean phosphatidylcholine, and cholesterol. This novel gene vector has high gene loading capabilities and excellent protection against nuclease degradation. An in vitro study showed that the liposomes had lower toxicity and superior cellular uptake and transfection efficiency compared with Lipofectamine 2000. An endosomal escape study revealed that the liposomes demonstrated high endosomal escape and released their genetic payload in the cytoplasm efficiently. Mechanistic studies indicated that the liposome/nucleic acid complexes entered cells through energy-dependent endocytosis that was mediated by fossa proteins. These results suggest that such cationic lipid-based liposome vectors have potential for clinical gene delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Neves AR, Sousa A, Faria R, Albuquerque T, Queiroz JA, Costa D. Cancer gene therapy mediated by RALA/plasmid DNA vectors: nitrogen to phosphate groups ratio (N/P) as a tool for tunable transfection efficiency and apoptosis. Colloids Surf B: Biointerfaces. 2020;185:110610.

    Article  CAS  Google Scholar 

  2. Bueren Juan A, Oscar Q, Elena A, Susana N, Paula R, Segovia José C, et al. Advances in the gene therapy of monogenic blood cell diseases. Clin Genet. 2020;97(1):89–102.

    Article  CAS  Google Scholar 

  3. Edina P, Gabriela P, Roberto G, Ursula M, Guilherme B. Effects of gene therapy on cardiovascular symptoms of lysosomal storage diseases. Genet Mol Biol. 2019;42(1 suppl 1):261–85.

    Article  Google Scholar 

  4. Rogers Geoffrey L, Cannon PM. Gene therapy approaches to human immunodeficiency virus and other infectious diseases. Hematol Oncol Clin North Am. 2017;31(5):883–95.

    Article  CAS  Google Scholar 

  5. Ciccocioppo R, Baumgart DC, Dos Santos CC, Galipeau J, Klersy C, Orlando G. Perspectives of the International Society for Cell & Gene Therapy Gastrointestinal Scientific Committee on the Intravenous Use of Mesenchymal Stromal Cells in Inflammatory Bowel Disease (PeMeGi). Cytotherapy. 2019;21(8):824–39.

    Article  CAS  Google Scholar 

  6. Scherman D. (2017). Optimized miniplasmid vectors for non-viral gene therapy BIT Congress Inc 45.

  7. Balbino Tiago A, Serafin Juliana M, Malfatti-Gasperini Antonio A, de Oliveira Cristiano LP, Cavalcanti Leide P, de Jesus MB, et al. Microfluidic assembly of pDNA/cationic liposome lipoplexes with high pDNA loading for gene delivery. Langmuir. 2016;32(7):1799–807.

    Article  CAS  Google Scholar 

  8. Mariko S, Furan S, Ayaka O, Hiroyuki K, Takehisa D, Naoto O, et al. Key determinants of siRNA delivery mediated by unique pH-responsive lipid-based liposomes. Int J Pharm. 2019;569:118606.

    Article  Google Scholar 

  9. Cunningham AJ, Gibson VP, Banquy X, Zhu XX, Jeanne LC. Cholic acid-based mixed micelles as siRNA delivery agents for gene therapy. Int J Pharm. 2020;578:119078.

    Article  CAS  Google Scholar 

  10. Manon R, Patrick N, Jean-Serge R, Antoine K. Cationic photopolymerized polydiacetylenic (PDA) micelles for siRNA delivery. Methods Mol Biol (Clifton, NJ). 2019;1943:101–22.

    Article  Google Scholar 

  11. Yi SW, Park JS, Kim HJ, Lee JS, Woo DG, Park KH. Multiply clustered gold-based nanoparticles complexed with exogenous pDNA achieve prolonged gene expression in stem cells. Theranostics. 2019;9(17):5009–19.

    Article  CAS  Google Scholar 

  12. Horton P, Wloch N. DNA vaccines for cancer therapy. Expert Opin Investig Drugs. 2001;8(12):2017–26.

    Article  Google Scholar 

  13. Ivics Z, Izsvák Z. Nonviral gene delivery with the sleeping beauty transposon system. Hum Gene Ther. 2011;22(9):1043–51.

    Article  CAS  Google Scholar 

  14. Walther W, Stein U, Fichtner I, Voss C, Schmidt T, Schleef M, et al. Intratumoral low-volume jet-injection for efficient nonviral gene transfer. Mol Biotechnol. 2002;21(2):105–15.

    Article  CAS  Google Scholar 

  15. Charles-Etienne D, Asun M, Lucas K, Swarts Daan C, Martin J, Anton W. Introducing gene deletions by mouse zygote electroporation of Cas12a/Cpf1. Transgenic Res. 2019;28(5–6):525–35.

    Google Scholar 

  16. Yoshiyuki H, Subin H, Hiraku O. Effects of cationic lipids in cationic liposomes and disaccharides in the freeze-drying of siRNA lipoplexes on gene silencing in cells by reverse transfection. J Liposome Res. 2019:1–33.

  17. Laila K, Atefeh M, Mohd MMF, Frederick C, Katharina W, Danielle V, et al. Trichain cationic lipids: the potential of their lipoplexes for gene delivery. Biomater Sci. 2018;7(1):149–58.

    Google Scholar 

  18. Defu Z, Yuchao B, Jian Y, Shaohui C, Yinan Z, Huiying C, et al. A review on cationic lipids with different linkers for gene delivery. Adv Colloid Interf Sci. 2017;253:117–40.

    Google Scholar 

  19. Ullah I, Zhao J, Rukh S, Muhammad K, Guo J, Ren X, et al. A PEG-b-poly(disulfide-L-lysine) based redox-responsive cationic polymer for efficient gene transfection. J Mater Chem B. 2019;7(11):1893–905.

    Article  CAS  Google Scholar 

  20. Olden Brynn R, Emmeline C, Yilong C, Pun SH. Identifying key barriers in cationic polymer gene delivery to human T cells. Biomater Sci. 2019;7:789–97.

    Article  Google Scholar 

  21. Gheibi HSM, Najmeh F, Esmat S, Amir R, Amirhossein S. Gene delivery using lipoplexes and polyplexes: principles, limitations and solutions. Crit Rev Eukaryot Gene Expr. 2019;29(1):29–36.

    Article  Google Scholar 

  22. Billiet L, Gomez J, Berchel M, Jaffrès P, Gall TL, Montier T, et al. Gene transfer by chemical vectors, and endocytosis routes of polyplexes, lipoplexes and lipopolyplexes in a myoblast cell line. Biomaterials. 2012;33(10):2980–90.

    Article  CAS  Google Scholar 

  23. ZhaoY ZH, Wang X, Zheng X, Chen Y, et al. Enhanced percutaneous delivery of methotrexate using micelles prepared with novel cationic amphipathic material. Int J Nanomedicine. 2020;15:3539–50.

    Article  Google Scholar 

  24. Bibo L, Biqiang L, Daiying H, Changyan F, Zhibin L, Mei H. Preparation, characterization, and in vitro pH-sensitivity evaluation of superparamagnetic iron oxide nanoparticle- misonidazole pH-sensitive liposomes. Curr Drug Deliv. 2019;16(3):254–67.

    Article  Google Scholar 

  25. Patel PM, Patel R, Wadia D, Patel RM. Dendritic macromolecules as nano-scale drug carriers: phase solubility, in vitro drug release, hemolysis and cytotoxicity study. Asian J Pharm Sci. 2015;10(4):306–13.

    Article  Google Scholar 

  26. Markelc B, Skvarca E, Dolinsek T, Kloboves VP, Coer A, Sersa G, et al. Inhibitor of endocytosis impairs gene electrotransfer to mouse muscle in vivo. Bioelectrochemistry. 2015;103:111–9.

    Article  CAS  Google Scholar 

  27. Li H, Hao Y, Wang N, Wang L, Jia S, Wang Y, et al. DOTAP functionalizing single-walled carbon nanotubes as non-viral vectors for efficient intracellular siRNA delivery. Drug Deliv. 2016;23(3):840–8.

    PubMed  Google Scholar 

  28. Luneva AS, Puchkov PA, Shmendel EV, Zenkova MA, Kuzevanova AY, Alimov AA, et al. Optimization of the technology for the preparation of cationic liposomes for the delivery of nucleic acids. Russ J Bioorganic Chem. 2018;44(6):724–31.

    Article  CAS  Google Scholar 

  29. Knudsen KB, Northeved H, Pramod Kumar EK, Permin A, Gjetting T, Andresen TL, et al. In vivo toxicity of cationic micelles and liposomes. Nanomedicine. 2015;11(2):467–77.

    Article  CAS  Google Scholar 

  30. Patrícia S, Marcelo S, Marianna F, Azzoni Adriano R, Chaud Marco V, Santana Maria Helena A, et al. Development and characterization of a cationic lipid nanocarrier as non-viral vector for gene therapy. Eur J Pharm Sci. 2015;66:78–82.

    Article  Google Scholar 

  31. Rakeshchandra R, Meka SG, Srujan Marepally KT, Hari Krishna Reddy Rachamalla AD, Ankita Hiwale RB, Vemula ACPK. Asymmetric cationic lipid based non-viral vectors for an efficient nucleic acid delivery. Royal Soc Chem. 2016;6:77841–8.

    Google Scholar 

  32. Anna L, Vincent S, Amandine D, Brigitte E, Denis M, Géraldine P. Cationic liposomes carrying siRNA: impact of lipid composition on physicochemical properties, cytotoxicity and endosomal escape. Nanomaterials (Basel, Switzerland). 2018;8(5).

  33. Petrichenko O, Rucins M, Vezane A, Timofejeva I, Sobolev A, Cekavicus B, et al. Studies of the physicochemical and structural properties of self-assembling cationic pyridine derivatives as gene delivery agents. Chem Phys Lipids. 2015;191:25–37.

    Article  CAS  Google Scholar 

  34. Scarmato P, Durand G, Agneray J, Feger J. Inhibitory effect of sodium arsenite and azide on asialoglycoprotein receptor mediated endocytosis in suspended rat hepatocytes. Biol Cell. 1986;56(3):255–8.

    Article  CAS  Google Scholar 

  35. Schrier SL, Junga I. Entry and distribution of chlorpromazine and vinblastine into human erythrocytes during endocytosis. Proc Soc Exp Biol Med. 1981;168(2):159–67.

    Article  CAS  Google Scholar 

  36. Noriaki N, Fumihiko O, Hiroko O, Yosuke N, Naohito K. Energy-dependent endocytosis is responsible for drug transcorneal penetration following the instillation of ophthalmic formulations containing indomethacin nanoparticles. Int J Nanomedicine. 2019;14:1213–27.

    Article  Google Scholar 

  37. Blok J, Scheven BA, Mulder-Stapel AA, Ginsel LA, Daems WT. Endocytosis in absorptive cells of cultured human small-intestinal tissue: effect of cytochalasin B and D. Cell Tissue Res. 1982;222(1):113–26.

    Article  CAS  Google Scholar 

  38. Chen M, Zeng Z, Qu X, Tang Y, Long Q, Feng X. Biocompatible anionic polyelectrolyte for improved liposome based gene transfection. Int J Pharm. 2015;490(1–2):173–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Pharmacy Department, Zhejiang University, Women’s Hospital, School of Medicine and School of Pharmacy, Zhejiang University of Technology, for the instrument support.

Funding

This work was financially supported by the National Natural Science Foundation of China, General Program (Grant Nos. 81802630, 81873838, 81802587) and Public Welfare Technology Research Project of Zhejiang Province (LGF18H300003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenxi Wang or Caihong Zheng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zheng, H., Wang, X. et al. Preparation and Biological Property Evaluation of Novel Cationic Lipid-Based Liposomes for Efficient Gene Delivery. AAPS PharmSciTech 22, 22 (2021). https://doi.org/10.1208/s12249-020-01868-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01868-w

KEY WORDS

Navigation