Skip to main content
Log in

Contrastive Studies of Cytarabine/Daunorubicin Dual-Loaded Liposomes Prepared by pH Gradient and Cu2+ Gradient Method

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Conventional combination chemotherapy often leads to unsatisfactory clinical outcomes due to the different distribution characteristics in vivo and the superimposed systemic toxicity of the drug cocktail. Co-encapsulated nano preparations have been gradually developed in recent years. In this work, cytarabine (Ara-C)/daunorubicin (DNR) liposomes were prepared by the pH gradient (ADL-pH) and Cu2+ gradient (ADL-Cu) methods. Ara-C did not show significant release from either ADL-Cu or ADL-pH in vitro during 168 h, which related to its logPoct. Different drug-loading patterns showed different release characteristics of DNR due to the different existence forms, ADL-pH contains the citrate form, while in ADL-Cu, there is the Cu2+ complex. To evaluate the release behavior, daunorubicin liposome (DL) and daunorubicin-Cu2+ complex (DNR-Cu) were prepared. The addition of EDTA in the release medium significantly increased the release rate of DNR from DL-Cu, while lower pH accelerated DNR release from both DL-pH and DL-Cu. The PK confirmed that ADL-Cu and ADL-pH could prolong the drug circulation time, and ADL-Cu had a mean retention time 1.5 times that of ADL-pH. Furthermore, both liposomes allowed the two drugs to maintain a relatively constant plasma concentration ratio for a prolonged time. Cytotoxicity assays showed that Ara-C/DNR with a molar ratio of 5:1 and 3:1 exhibited an excellent synergistic effect, which was more obvious at 5:1. In vitro antitumor results revealed that ADL-Cu exhibited more cytotoxicity than ADL-pH. All factors tested in this work suggest the considerable potential of ADL-Cu and ADL-pH for anticancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

Ara-C:

Cytarabine

DNR:

Daunorubicin

ADL-pH:

Cytarabine/daunorubicin liposome prepared by pH gradient method

ADL-Cu:

Cytarabine/daunorubicin liposome prepared by Cu2+ gradient method

DL:

Daunorubicin liposome

DNR-Cu:

Daunorubicin-Cu2+ complex

AML:

Acute myelogenous leukemia

DL-passive:

Daunorubicin liposome prepared by passive drug-loading method

DL-Cu:

Daunorubicin liposome prepared by Cu2+ gradient method

DL-pH:

Daunorubicin liposome prepared by pH gradient method

TEM:

Transmission electron microscopy

PK:

Pharmacokinetics

DMSO:

Dimethyl sulfoxide

CI:

Combination Index

MRT:

Mean residence time

ROS:

Reactive oxygen species

References

  1. Kim W, Haws H, Mangelson R, Peterson P, Whatcott C, Siddiqui-Jain A, et al. Alvocidib synergizes with cytarabine and daunorubicin (7+3) in preclinical models of acute myeloid leukemia. Haematologica. 2017;102:370.

  2. Trusova VM, Deligeorgiev T, Gorbenko G. Liposomal co-encapsulation of two novel europium complexes and doxorubicin: fluorescence study. J Fluoresc. 2017;27(4):1359–63. https://doi.org/10.1007/s10895-017-2070-x.

    Article  CAS  PubMed  Google Scholar 

  3. Lei J, Cong S, Song M, Zhang W, Peng G, Li X, et al. Combination of doxorubicin with harmine-loaded liposomes exerting synergistic antitumor efficacy. Drug Dev Ind Pharm. 2018;44(4):570–81. https://doi.org/10.1080/03639045.2017.1405432.

    Article  CAS  PubMed  Google Scholar 

  4. Maakaron JE, Mims AS. Daunorubicin-cytarabine liposome (CPX-351) in the management of newly diagnosed secondary AML: a new twist on an old cocktail. Best Pract Res Clin Haematol. 2019;32(2):127–33. https://doi.org/10.1016/j.beha.2019.05.005.

    Article  PubMed  Google Scholar 

  5. Tardi PG, Dos Santos N, Harasym TO, Johnstone SA, Zisman N, Tsang AW, et al. Drug ratio-dependent antitumor activity of irinotecan and cisplatin combinations in vitro and in vivo. Mol Cancer Ther. 2009;8(8):2266–75. https://doi.org/10.1158/1535-7163.MCT-09-0243.

    Article  CAS  PubMed  Google Scholar 

  6. Harasym TO, Liboiron BD, Mayer LD. Drug ratio-dependent antagonism: a new category of multidrug resistance and strategies for its circumvention. Methods Mol Biol. 2010;596:291–323. https://doi.org/10.1007/978-1-60761-416-6_13.

    Article  CAS  PubMed  Google Scholar 

  7. Camacho KM, Menegatti S, Vogus DR, Pusuluri A, Fuchs Z, Jarvis M, et al. DAFODIL: a novel liposome-encapsulated synergistic combination of doxorubicin and 5FU for low dose chemotherapy. J Control Release. 2016;229:154–62. https://doi.org/10.1016/j.jconrel.2016.03.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Raut LS. Novel formulation of cytarabine and daunorubicin: a new hope in AML treatment. South Asian J Cancer. 2015;3:38–40. https://doi.org/10.4103/2278-330X.149950.

    Article  Google Scholar 

  9. Jensen IS, Wu E, Sacks NC, Cyr PL, Chung KC. Budget impact analysis of using daunorubicin-cytarabine liposome in patients with newly diagnosed therapy-related AML or AML and myelodysplasia-related changes. Am Health Drug Benefits. 2018;11(No.7):380–6.

    PubMed  PubMed Central  Google Scholar 

  10. Lancet JE, Uy GL, Cortes JE, Newell LF, Lin TL, Ritchie EK, et al. Cpx-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J Clin Oncol. 2018;36(No.26):2684–92. https://doi.org/10.1200/JCO.2017.77.6112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Krauss AC, Gao X, Li L, Manning ML, Patel P, Fu W, et al. FDA approval summary: (daunorubicin and cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia. Clin Cancer Res. 2019;25(9):2685–90. https://doi.org/10.1158/1078-0432.CCR-18-2990.

    Article  CAS  PubMed  Google Scholar 

  12. Tardi P, Johnstone S, Harasym N, Xie S, Harasym T, Zisman N, et al. In vivo maintenance of synergistic cytarabine:daunorubicin ratios greatly enhances therapeutic efficacy. Leuk Res. 2009;33(1):129–39. https://doi.org/10.1016/j.leukres.2008.06.028.

    Article  CAS  PubMed  Google Scholar 

  13. Kim M, Williams S. Daunorubicin and cytarabine liposome in newly diagnosed therapy-related acute myeloid leukemia (AML) or AML with myelodysplasia-related changes. Ann Pharmacother. 2018;52(8):792–800. https://doi.org/10.1177/1060028018764923.

    Article  CAS  PubMed  Google Scholar 

  14. Tolcher AWML. Improving combination cancer therapy: the CombiPlex((R)) development platform. Future Oncol. 2018;14(No.13):1317–32. https://doi.org/10.1007/s10637-012-9839-1.

    Article  CAS  PubMed  Google Scholar 

  15. Kim HP, Gerhard B, Harasym TO, Mayer LD, Hogge DE. Liposomal encapsulation of a synergistic molar ratio of cytarabine and daunorubicin enhances selective toxicity for acute myeloid leukemia progenitors as compared to analogous normal hematopoietic cells. Exp Hematol. 2011;39(7):741–50. https://doi.org/10.1016/j.exphem.2011.04.001.

    Article  CAS  PubMed  Google Scholar 

  16. Dicko A, Kwak S, Frazier AA, Mayer LD, Liboiron BD. Biophysical characterization of a liposomal formulation of cytarabine and daunorubicin. Int J Pharm. 2010;391(1–2):248–59. https://doi.org/10.1016/j.ijpharm.2010.02.014.

    Article  CAS  PubMed  Google Scholar 

  17. Sha X, Guo J, Chen Y, Fang X. Effect of phospholipid composition on pharmacokinetics and biodistribution of epirubicin liposomes. J Liposome Res. 2012;22(1):80–8. https://doi.org/10.3109/08982104.2011.627513.

    Article  CAS  PubMed  Google Scholar 

  18. Eloy JO, Claro de Souza M, Petrilli R, Barcellos JP, Lee RJ, Marchetti JM. Liposomes as carriers of hydrophilic small molecule drugs: strategies to enhance encapsulation and delivery. Colloids Surf B: Biointerfaces. 2014;123:345–63. https://doi.org/10.1016/j.colsurfb.2014.09.029.

    Article  CAS  PubMed  Google Scholar 

  19. Mayer LD, Tardi P, Louie AC. CPX-351: a nanoscale liposomal co-formulation of daunorubicin and cytarabine with unique biodistribution and tumor cell uptake properties. Int J Nanomedicine. 2019;14:3819–30. https://doi.org/10.2147/IJN.S139450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lei M, Ma M, Pang X, Tan F, Li N. A dual pH/thermal responsive nanocarrier for combined chemo-thermotherapy based on a copper-doxorubicin complex and gold nanorods. Nanoscale. 2015;7(38):15999–6011. https://doi.org/10.1039/c5nr04353k.

    Article  CAS  PubMed  Google Scholar 

  21. Azadeh Kheirolomoom LMM, Lai C-Y, Lindfors HA, Seo JW, Paoli EE, Watson KD, et al. Copper-doxorubicin as a nanoparticle cargo retains efficacy with minimal toxicity. Mol Pharm. 2010;7(No.6):1948–58. https://doi.org/10.1021/mp100245u.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alfayez M, Kantarjian H, Kadia T, Ravandi-Kashani F, Daver N. CPX-351 (vyxeos) in AML. Leuk Lymphoma. 2020;61(2):288–97. https://doi.org/10.1080/10428194.2019.1660970.

    Article  CAS  PubMed  Google Scholar 

  23. Liu J, Chi D, Pan S, Zhao L, Wang X, Wang D, et al. Effective co-encapsulation of doxorubicin and irinotecan for synergistic therapy using liposomes prepared with triethylammonium sucrose octasulfate as drug trapping agent. Int J Pharm. 2019;557:264–72. https://doi.org/10.1016/j.ijpharm.2018.12.072.

    Article  CAS  PubMed  Google Scholar 

  24. Russell LM, Hultz M, Searson PC. Leakage kinetics of the liposomal chemotherapeutic agent Doxil: the role of dissolution, protonation, and passive transport, and implications for mechanism of action. J Control Release. 2018;269:171–6. https://doi.org/10.1016/j.jconrel.2017.11.007.

    Article  CAS  PubMed  Google Scholar 

  25. Beraldo H, Garnier-Suillerot A, Tosi L. Copper(II)-adriamycin complexes. A circular dichroism and resonance Raman study. Inorg Chem. 1983;22(26):4117–24. https://doi.org/10.1021/ic00168a058.

    Article  CAS  Google Scholar 

  26. Nakamura K, Yoshino K, Yamashita K, Kasukawa H. Designing a novel in vitro drug-release-testing method for liposomes prepared by pH-gradient method. Int J Pharm. 2012;430(1–2):381–7. https://doi.org/10.1016/j.ijpharm.2012.04.011.

    Article  CAS  PubMed  Google Scholar 

  27. Lee RJ, Wang S, Turk MJ, Low PS. The effects of pH and intraliposomal buffer strength on the rate of liposome content release and intracellular drug delivery. Biosci Rep. 1998;18(2):69–78. https://doi.org/10.1023/A:1020132226113.

  28. Kang JH, Jang WY, Ko YT. The effect of surface charges on the cellular uptake of liposomes investigated by live cell imaging. Pharm Res. 2017;34(4):704–17. https://doi.org/10.1007/s11095-017-2097-3.

    Article  CAS  PubMed  Google Scholar 

  29. Barenholz Y. Liposome application: problems and prospects. Curr Opin Colloid Interface Sci. 2001;6(No.1):66–77. https://doi.org/10.1016/S1359-0294(00)00090-X.

    Article  CAS  Google Scholar 

  30. Fenske PRCMJHMBBTDMLDMDB. Influence of pH gradients on the transbilayer transport of drugs, lipids, peptides and metal ions into large unilamellar vesicles. Biochim Biophys Acta. 1997;1331(No.2):187–211. https://doi.org/10.1016/S0304-4157(97)00006-3.

    Article  PubMed  Google Scholar 

  31. Gagdhattdlas T. Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals. Adv Drug Deliv Rev. 1997;24(No.2):337–44. https://doi.org/10.1016/S0169-409X(96)00476-0.

    Article  Google Scholar 

  32. GASHB Y. Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin Pharmacokinet. 2003;42(No.5):419–36.

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to the help of my tutor Xing Tang and my sister Lingli Zhou, and Amanda Pearce is gratefully thanked for correcting English grammar of the manuscript.

Funding

This work was supported by the National Mega-project for Innovative Drugs (No. 2019ZX09721001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Tang.

Ethics declarations

All animal experiments were approved by the Ethics Committee of Shenyang Pharmaceutical University.

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All animal experiments are in line with guidelines for the care and use of laboratory animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhou, L., Zhang, Y. et al. Contrastive Studies of Cytarabine/Daunorubicin Dual-Loaded Liposomes Prepared by pH Gradient and Cu2+ Gradient Method. AAPS PharmSciTech 21, 325 (2020). https://doi.org/10.1208/s12249-020-01867-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01867-x

KEY WORDS

Navigation