Skip to main content

Advertisement

Log in

Targeted and Combined TPCA-1-Gold Nanocage Therapy for In Vivo Treatment of Inflammatory Arthritis

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is an autoimmune disease that is currently incurable. Inhibition of inflammation can prevent the deterioration of RA. 2-[(Aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide (TPCA-1) suppresses inflammation via the inhibition of nuclear factor-κ (NF-κB) signaling pathway. Gold-based therapies have been used to treat inflammatory arthritis since the 1940s. Hyaluronic acid (HA) is a targeting ligand for CD44 receptors overexpressed on activated macrophages. Therefore, a combined therapy based on TPCA-1, gold, and HA was explored for the treatment of RA in this study. We used gold nanocages (AuNCs) to load TPCA-1 and modified the TPCA-1 (T) loaded AuNCs with HA and peptides (P) to construct an anti-inflammatory nanoparticle (HA-AuNCs/T/P). An adjuvant-induced arthritis (AIA) mice model was used to investigate the in vivo anti-inflammatory efficacy of HA-AuNCs/T/P. In vivo distribution results showed that HA-AuNCs/T/P had increased and prolonged accumulation at the inflamed paws of AIA mice. Treatment by the HA-AuNCs/T/P suppressed joint swelling and alleviated cartilage and bone damage. By loading to HA-AuNCs/T/P, the effective concentration of TPCA-1 was greatly reduced from 20 to 0.016 mg/kg mice. This study demonstrated that HA-AuNCs/T/P could effectively suppress inflammation and alleviate the symptoms of AIA mice, suggesting a great potential of HA-AuNCs/T/P for the treatment of RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. van der Woude D, van der Helm-van Mil AHM. Update on the epidemiology, risk factors, and disease outcomes of rheumatoid arthritis. Best Pract Res Clin Rheumatol. 2018;32(2):174–87.

    Article  PubMed  Google Scholar 

  2. Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, et al. Rheumatoid arthritis. Nat Rev Dis Primers. 2018;4:18002.

  3. Schett G, Gravallese E. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat Rev Rheumatol. 2012;8(11):656–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Makarov SS. NF-kappaB as a therapeutic target in chronic inflammation: recent advances. Mol Med Today. 2000;6(11):441–8.

    Article  CAS  PubMed  Google Scholar 

  5. Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J Clin Investig. 2001;107(2):135–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bremner P, Heinrich M. Natural products as targeted modulators of the nuclear factor-κB pathway. J Pharm Pharmacol. 2002;54(4):453–72.

    Article  CAS  PubMed  Google Scholar 

  7. Cuzzocrea S, Chatterjee PK, Mazzon E, Dugo L, Serraino I, Britti D, et al. Pyrrolidine dithiocarbamate attenuates the development of acute and chronic inflammation. Br J Pharmacol. 2002;135(2):496–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baldwin AS. Series introduction: the transcription factor NF-kappaB and human disease. J Clin Investig. 2001;107(1):3–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Edwards MR, Bartlett NW, Clarke D, Birrell M, Belvisi M, Johnston SL. Targeting the NF-kappa B pathway in asthma and chronic obstructive pulmonary disease. Pharmacol Ther. 2009;121(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  10. Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, et al. Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev. 2009;8(1):18–30.

    Article  CAS  PubMed  Google Scholar 

  11. Mitchell S, Vargas J, Hoffmann A. Signaling via the NFκB system. Wiley Interdiscip Rev Syst Biol Med 2016;8(3):227–41.

  12. Hu MC, Wang YP, Qiu WR, Mikhail A, ., Meyer CF, Tan TH. Hematopoietic progenitor kinase-1 (HPK1) stress response signaling pathway activates IkappaB kinases (IKK-alpha/beta) and IKK-beta is a developmentally regulated protein kinase. Oncogene. 1999;18(40):5514–5524.

    Article  CAS  PubMed  Google Scholar 

  13. Li Q, ., Antwerp D, Van Mercurio F, Lee KF, Verma IM. Severe liver degeneration in mice lacking the IkappaB kinase 2 gene. Science. 1999;284(5412):321–325.

    Article  CAS  PubMed  Google Scholar 

  14. Nandini K, Cindy S, Sumathy M, Julia G, Min Y, Scott H, et al. A selective IKK-2 inhibitor blocks NF-kappa B-dependent gene expression in interleukin-1 beta-stimulated synovial fibroblasts. J Biol Chem. 2003;278(35):32861–71.

    Article  CAS  Google Scholar 

  15. Podolin PL, Callahan JF, Bolognese BJ, Yue H, Li KC, Gregg TD, et al. Attenuation of murine collagen-induced arthritis by a novel, potent, selective small molecule inhibitor of IkappaB kinase 2, TPCA-1 (2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide), occurs via reduction of proinflammatory cytokines and. J Pharmacol Exp Ther. 2005;312(1):373–81.

    Article  CAS  PubMed  Google Scholar 

  16. Arvizo RR, Bhattacharyya S, Kudgus RA, Giri K, Bhattacharya R, Mukherjee P. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev. 2012;41(7):2943–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pereira DV, Petronilho F, Pereira HR, Vuolo F, Mina F, Possato JC, et al. Effects of gold nanoparticles on endotoxin-induced uveitis in rats. Invest Ophthalmol Vis Sci. 2012;53(13):8036–41.

    Article  CAS  PubMed  Google Scholar 

  18. Tsai CY, Shiau AL, Chen SY, Chen YH, Cheng PC, Chang MY, et al. Amelioration of collagen-induced arthritis in rats by nanogold. Arthritis Rheum. 2007;56(2):544–54.

    Article  PubMed  Google Scholar 

  19. Bao S, Huang S, Liu Y, Hu Y, Wang W, Ji M, et al. Gold nanocages with dual modality for image-guided therapeutics. Nanoscale. 2017;9(21):7284–96.

    Article  CAS  PubMed  Google Scholar 

  20. Peng G, Z-e H, Umair M, Hussain I, Javed I. Nanosilver at the interface of biomedical applications, toxicology, and synthetic strategies[M]. Metal nanoparticles for drug delivery and diagnostic applications: Elsevier; 2020. p. 119–39.

  21. Wan Y, Guo Z, Jiang X, Fang K, Lu X, Zhang Y, et al. Quasi-spherical silver nanoparticles: aqueous synthesis and size control by the seed-mediated Lee-Meisel method. J Colloid Interface Sci. 2013;394:263–8.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang N, Wardwell PR, Bader RA. Polysaccharide-based micelles for drug delivery. Pharmaceutics. 2013;5(2):329–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Z, Chen Z, Liu Z, Shi P, Dong K, Ju E, et al. A multi-stimuli responsive gold nanocage-hyaluronic platform for targeted photothermal and chemotherapy. Biomaterials. 2014;35(36):9678–88.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao J. Hyaluronic acid-modified and TPCA-1-loaded gold nanocages alleviate inflammation. Pharmaceutics. 2019;11(3):143:1–9.

  25. Liu R, Xiao W, Hu C, Xie R, Gao H. Theranostic size-reducible and no donor conjugated gold nanocluster fabricated hyaluronic acid nanoparticle with optimal size for combinational treatment of breast cancer and lung metastasis. J Control Release. 2018;278:127–39.

    Article  CAS  PubMed  Google Scholar 

  26. Cao J, Zhang N, Wang Z, Su J, Yang J, Han J, et al. Microneedle-assisted transdermal delivery of etanercept for rheumatoid arthritis treatment. Pharmaceutics. 2019;11(5), 235:1–12.

  27. Liang H, Peng B, Dong C, Liu L, Mao J, Wei S, et al. Cationic nanoparticle as an inhibitor of cell-free DNA-induced inflammation. Nat Commun. 2018;9(1):4291.

  28. Wang H, Li X, Tse BW, Yang H, Thorling CA, Liu Y, et al. Indocyanine green-incorporating nanoparticles for cancer theranostics. Theranostics. 2018;8(5):1227–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chillingworth NL, Donaldson LF. Characterisation of a Freund's complete adjuvant-induced model of chronic arthritis in mice. J Neurosci Methods. 2003;128(1–2):45–52.

    Article  PubMed  Google Scholar 

  30. Gauldie SD, McQueen DS, Clarke CJ, Chessell IP. A robust model of adjuvant-induced chronic unilateral arthritis in two mouse strains. J Neurosci Methods. 2004;139(2):281–91.

    Article  PubMed  Google Scholar 

  31. Asquith DL, Miller AM, McInnes IB, Liew FY. Animal models of rheumatoid arthritis. Eur J Immunol. 2009;39(8):2040–4.

    Article  CAS  PubMed  Google Scholar 

  32. Pearson CM. Development of arthritis, periarthritis and periostitis in rats given adjuvants. Proc Soc Exp Biol Med Soc Exp Bio Med (New York, NY). 1956;91(1):95–101.

    Article  CAS  Google Scholar 

  33. Totoson P, Maguin-Gaté K, Prati C, Wendling D, Demougeot C. Mechanisms of endothelial dysfunction in rheumatoid arthritis: lessons from animal studies. Arthritis Res Ther. 2014;16(1):202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Yun L, Shang H, Gu H, Zhang N. Polymeric micelles for the treatment of rheumatoid arthritis. Crit Rev Ther Drug Carrier Syst. 2019;36(3):219–38.

    Article  PubMed  Google Scholar 

  35. Yang M, Feng X, Ding J, Chang F, Chen X. Nanotherapeutics relieve rheumatoid arthritis. J Control Release. 2017;252:108–24.

    Article  CAS  PubMed  Google Scholar 

  36. Brand DD. Rodent models of rheumatoid arthritis. Comp Med. 2005;55(2):114–22.

    CAS  PubMed  Google Scholar 

  37. Zheng KW, Zhao ZX, Lin N, Wu YY, Xu Y, Zhang WL. Protective effect of pinitol against inflammatory mediators of rheumatoid arthritis via inhibition of protein tyrosine phosphatase non-receptor type 22 (PTPN22). Med Sci Monitor. 2017:23:1923–32.

  38. Golombek SK, May JN, Theek B, Appold L, Drude N, Kiessling F, et al. Tumor targeting via EPR: strategies to enhance patient responses. Adv Drug Deliv Rev. 2018;130:17–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sneath RJ, Mangham DC. The normal structure and function of CD44 and its role in neoplasia. Mol Pathol. 1998;51(4):191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kjelgaard-Petersen CF, Sharma N, Kayed A, Karsdal MA, Mobasheri A, Hägglund P, et al. Tofacitinib and TPCA-1 exert chondroprotective effects on extracellular matrix turnover in bovine articular cartilage ex vivo. Biochem Pharmacol. 2019;165:91–8.

    Article  CAS  PubMed  Google Scholar 

  41. Viatte S, Barton A. Genetics of rheumatoid arthritis susceptibility, severity, and treatment response. Semin Immunopathol. 2017;39(4):395–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ospelt C. Synovial fibroblasts in 2017. RMD Open. 2017;3(2):e000471.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sondergaard BC, Schultz N, Madsen SH, Bay-Jensen AC, Kassem M, Karsdal MA. MAPKs are essential upstream signaling pathways in proteolytic cartilage degradation--divergence in pathways leading to aggrecanase and MMP-mediated articular cartilage degradation. Osteoarthr Cartil. 2010;18(3):279–88.

    Article  Google Scholar 

  44. Goronzy JJ, Weyand CM. T cell homeostasis and autoreactivity in rheumatoid arthritis. Curr Dir Autoimmun. 2001;3:112–32.

    Article  CAS  PubMed  Google Scholar 

  45. Teng F, Felix KM, Bradley CP, Naskar D, Ma H, Raslan WA, et al. The impact of age and gut microbiota on Th17 and Tfh cells in K/BxN autoimmune arthritis. Arthritis Res Ther. 2017;19(1):188.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Teng F, Klinger CN, Felix KM, Bradley CP, Wu E, Tran NL, et al. Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of Peyer’s patch T follicular helper cells. Immunity. 2016;44(4):875–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu HJ, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010;32(6):815–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aletaha D, Smolen JS. Diagnosis and management of rheumatoid arthritis: a review. Jama. 2018;320(13):1360–72.

    Article  PubMed  Google Scholar 

Download references

Funding

This research was funded by the China Postdoctoral Science Foundation (2015M582211) and Natural Science Foundation of Henan Province, China (202300410419).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Zhang.

Ethics declarations

Animal care and experiments were performed with the approval of the animal ethical committee of Zhengzhou University (Zhengzhou, China), according to the requirements of the National Act on the Use of Experimental Animals (China).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yang, J., Yang, Y. et al. Targeted and Combined TPCA-1-Gold Nanocage Therapy for In Vivo Treatment of Inflammatory Arthritis. AAPS PharmSciTech 21, 298 (2020). https://doi.org/10.1208/s12249-020-01856-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01856-0

KEY WORDS

Navigation