Skip to main content
Log in

Modeling Drying Behavior of an Aqueous Chitosan Single Droplet Using the Reaction Engineering Approach

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Spray drying of Chitosan solutions to prepare microparticles either using pilot or industrial scale spray dryer is a complex process; tracking morphological changes and obtaining drying kinetics of a single droplet would be very difficult. The acoustic levitator being a non-intrusive method is a useful experimental apparatus that enables particle/droplet suspension in the gaseous medium and capable of mimicking the drying process in a spray dryer. The drying of chitosan aqueous solutions into solid particles was investigated. The prediction of the size and drying kinetics until the formation of the solid structure was performed in an acoustic levitator. Studying the drying of single droplets is crucial for revealing the influence of the drying process parameters on the formation of dried particles. Droplets with initial chitosan concentration (10, 20, and 30 mg/ml) were investigated at different air-drying temperatures. A Reaction Engineering Approach (REA) model was developed and compared with the experimental drying curves, a very well agreement was found between the drying experiments and the REA model with a relative error of about 3% between the initial droplet mass and predicted droplet mass by the REA model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A :

the surface area of droplet, [m2]

A 0e :

sound pressure amplitude, [N/m2]

B :

gas particle velocity, [m/s]

D :

droplet diameter, [m]

D 0 :

initial droplet diameter, [m]

E v :

activation energy, [j/mol]

h m :

mass transfer coefficient, [m/s]

\( {\dot{m}}_A \) :

mass flow rate of A, [kg/s]

m d :

total mass of the droplet, [kg].

m L :

mass of the liquid inside the droplet, [kg]

m s :

mass of the solids inside the droplet, [kg]

Nu:

nusselt number, [−]

R :

gas constant, 8.314462 [J/(mol·K)]

RHg :

relative humidity of drying air, [−]

S s :

minor axis, [m]

S l :

major axis, [m]

Sc:

Schmidt number, [−]

Sh:

Sherwood number, [−]

SPL:

sound pressure level, [dB]

T :

temperature, [k]

v s :

sound velocity, [m/s]

X :

dry basis of moisture content, [kg/kg]

α g :

thermal diffusivity of the gas, [m2/s]

ρ :

mass concentration of the droplet, [kg/m3]

ρ As :

vapor mass concentration at the droplet surface, [kg/m3]

\( {\rho}_{\mathrm{As}}^{\ast } \) :

saturated vapor mass density, [kg/m3]

ρ g :

the density of the air, [kg/m3]

\( {\mathfrak{D}}_g \) :

diffusion coefficient of vapor, [m/s2]

ω A :

mass fraction of the vapor, [−]

ω solids :

mass fraction of the solids, [−]

Ω Ac :

angular frequency, [Hz]

ψ :

fractionality coefficient

e :

equilibrium

s :

surface of droplet

d :

droplet

g :

gas

References

  1. Vrentas JS, Vrentas CM. Drying of solvent-coated polymer-films. J Polym Sci Polym Phys. 1994;32(1):187–94.

    CAS  Google Scholar 

  2. Bilancetti L, Poncelet D, Loisel C, Mazzitelli S, Nastruzzi C. A statistical approach to optimize the spray drying of starch particles: application to dry powder coating. AAPS PharmSciTech. 2010;11(3):1257–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Poozesh S, Bilgili E. Scale-up of pharmaceutical spray drying using scale-up rules: a review. Int J Pharm. 2019;562(January):271–92.

    CAS  PubMed  Google Scholar 

  4. Sosnik A, Seremeta KP. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv Colloid Interf Sci. 2015;223:40–54.

    CAS  Google Scholar 

  5. Jiang W-Z, Cai Y, Li H-Y. Chitosan-based spray-dried mucoadhesive microspheres for sustained oromucosal drug delivery. Powder Technol. 2017;312:124–32.

    CAS  Google Scholar 

  6. Bhise KS, Dhumal RS, Paradkar AR, Kadam SS. Effect of drying methods on swelling, Erosion and drug release from chitosan–naproxen sodium complexes. AAPS PharmSciTech. 2008;9(1):1–12.

    CAS  PubMed  Google Scholar 

  7. Azad M, Arteaga C, Abdelmalek B, Dave R, Bilgili E. Spray drying of drug-swellable dispersant suspensions for preparation of fast-dissolving, high drug-loaded, surfactant-free nanocomposites. Drug Dev Ind Pharm. 2015;41(10):1617–31.

    CAS  PubMed  Google Scholar 

  8. Kreimer M, Aigner I, Sacher S, Krumme M, Mannschott T, van der Wel P, et al. Mechanical strength of microspheres produced by drying of acoustically levitated suspension droplets. Powder Technol. 2018;325:247–60.

    CAS  Google Scholar 

  9. Kajiya T, Kobayashi W, Okuzono T, Doi M. Controlling the drying and film formation processes of polymer solution droplets with addition of small amount of surfactants. J Phys Chem B. 2009;113(47):15460–6.

    CAS  PubMed  Google Scholar 

  10. Estevinho BN, Rocha F, Santos L, Alves A. Microencapsulation with chitosan by spray drying for industry applications – a review. Trends Food Sci Technol. 2013;31(2):138–55.

    CAS  Google Scholar 

  11. Schafroth N, Arpagaus C, Jadhav UY, Makne S, Douroumis D. Nano and microparticle engineering of water insoluble drugs using a novel spray-drying process. Colloids Surf B: Biointerfaces. 2012;90:8–15.

    CAS  PubMed  Google Scholar 

  12. Liu W, Chen XD, Selomulya C. On the spray drying of uniform functional microparticles. Particuology. 2015;22:1–12.

    Google Scholar 

  13. Littringer EM, Mescher A, Schroettner H, Achelis L, Walzel P, Urbanetz NA. Spray dried mannitol carrier particles with tailored surface properties: the influence of carrier surface roughness and shape. Eur J Pharm Biopharm. 2012;82(1):194–204.

    CAS  PubMed  Google Scholar 

  14. Pohlen M, Lavrič Z, Prestidge C, Dreu R. Preparation, physicochemical characterisation and DoE optimisation of a spray-dried dry emulsion platform for delivery of a poorly soluble drug, Simvastatin. AAPS PharmSciTech. 2020;21(4):119.

    CAS  PubMed  Google Scholar 

  15. Thybo P, Hovgaard L. Droplet size measurements for spray dryer scale-up. Pharm Dev Technol. 2008;13(2):93–104.

    CAS  PubMed  Google Scholar 

  16. Velaga SP, Nikjoo D, Vuddanda PR. Experimental studies and modeling of the drying kinetics of multicomponent polymer films. AAPS PharmSciTech. 2018;19(1):425–35.

    CAS  PubMed  Google Scholar 

  17. Lindeløv JS, Wahlberg M. Spray drying for processing of nanomaterials. J Phys Conf Ser. 2009;170(012027):1–7.

    Google Scholar 

  18. Wilms J. Evaporation of multicomponent droplets. Stuttgart: Universität Stuttgart; 2005.

    Google Scholar 

  19. Ranz WE, Marshall JR. Evaporation from drops 1. Chem Eng Prog. 1952;48:141–6.

    CAS  Google Scholar 

  20. Charlesworth DH, Marshall WR Jr. Evaporation from droplets containing dissolved solids. AICHE J. 1960;6:9–23.

    CAS  Google Scholar 

  21. Lin J-C, Gentry JW. Spray drying drop morphology: experimental study. Aerosol Sci Technol. 2003;37:15–32.

    CAS  Google Scholar 

  22. Lin SX, Chen XD. Improving the glass-filament method for accurate measurement of drying kinetics of liquid droplets. Trans IChemE. 2002;80(A):401–10.

    CAS  Google Scholar 

  23. Morgan BA, Xing Z, Cranston ED, Thompson MR. Acoustic levitation as a screening method for excipient selection in the development of dry powder vaccines. Int J Pharm. 2019;563(February):71–8.

    CAS  PubMed  Google Scholar 

  24. Al ZB. Oblate spheroidal droplet evaporation in an acoustic levitator. Int J Heat Mass Transf. 2018;126(Part B):164–72.

    Google Scholar 

  25. Mondragon R, Hernandez L, Julia JE, Jarque JC, Chiva S, Zaitone B, et al. Study of the drying behavior of high load multiphase droplets in an acoustic levitator at high temperature conditions. Chem Eng Sci. 2011;66(12):2734–44.

    CAS  Google Scholar 

  26. Al Zaitone B, Lamprecht A. Single droplet drying step characterization in microsphere preparation. Colloids Surf B-Biointerfaces 2013;105(0):328–334.

  27. Al Zaitone B, Al-Zahrani A, Al-Shahrani S, Lamprecht A. Drying of a single droplet of dextrin: drying kinetics modeling and particle formation. Int J Pharm. 2020;574:118888.

    PubMed  Google Scholar 

  28. Chen XD, Xie GZ. Fingerprints of the drying behaviour of particulate or thin layer food materials established using a reaction engineering model. Trans IChemE. 1997;75(4):213–22.

    Google Scholar 

  29. Chen XD, Lin SXQ. Air drying of milk droplet under constant and time-dependent conditions. AICHE J. 2005;51(6):1790–9.

    CAS  Google Scholar 

  30. Chen XD. The basics of a reaction engineering approach to modeling air-drying of small droplets or thin-layer materials. Dry Technol. 2008;26(6):627–39.

    CAS  Google Scholar 

  31. Yarin A, Brenn G, Kastner O, Rensink D, Tropea C. Evaporation of acoustically levitated droplets. Fluid Mech. 1999;399:151–204.

    CAS  Google Scholar 

  32. Morse PM. Vibration and sound. 2nd ed: McGraw-Hill; 1948.

  33. Lierke EG. Akustische Positionierung - Ein umfassender Überblick über Grundlagen und Anwendungen. Acta Acust United Ac. 1996;82:220–37.

    Google Scholar 

  34. Dong Y, Ruan Y, Wang H, Zhao Y, Bi D. Studies on glass transition temperature of chitosan with four techniques. J Appl Polym Sci. 2004;93(4):1553–8.

    CAS  Google Scholar 

  35. Al Zaitone BA, Tropea C. Evaporation of pure liquid droplets: comparison of droplet evaporation in an acoustic field versus glass-filament. Chem Eng Sci. 2011;66(17):3914–21.

    Google Scholar 

  36. Khlibsuwan R, Pongjanyakul T. Spray-dried chitosan-magnesium aluminum silicate microparticles as matrix formers in controlled release tablets. J Drug Deliv Sci Technol. 2015;30:114–22.

    CAS  Google Scholar 

  37. Gover Antoniraj M, Maria Leena M, Moses JA, Anandharamakrishnan C. Cross-linked chitosan microparticles preparation by modified three fluid nozzle spray drying approach. Int J Biol Macromol. 2020;147:1268–77.

    CAS  PubMed  Google Scholar 

  38. Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R. Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res Int. 2007;40(9):1107–21.

    CAS  Google Scholar 

  39. Farid M. A new approach to modelling of single droplet drying. Chem Eng Sci. 2003;58:2985–93.

    CAS  Google Scholar 

  40. Cairncross RA, Durning CJ. A model for drying of viscoelastic polymer coatings AIChE 1996;42(9):2415–2425.

  41. Vinjamur M, Cairncross RA. A high airflow drying experimental set-up to study drying behavior of polymer solvent coatings. Dry Technol. 2001;19(8):1591–612.

    CAS  Google Scholar 

  42. Vinjamur M, Cairncross RA. Experimental investigations of trapping skinning. J Appl Polym Sci. 2002;83(10):2269–73.

    CAS  Google Scholar 

  43. Salem A, Ahmadlouiedarab M, Ghasemzadeh K. CFD approach for the moisture prediction in spray chamber for drying of salt solution. J Ind Eng Chem. 2011;17(3):527–32.

    CAS  Google Scholar 

  44. Poozesh S, Lu K, Marsac PJ. On the particle formation in spray drying process for bio-pharmaceutical applications: interrogating a new model via computational fluid dynamics. Int J Heat Mass Transf. 2018;122:863–76.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors, therefore, gratefully acknowledge the DSR technical and financial support.

Funding

This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant no. (4-135-36-RG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belal Al Zaitone.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Zaitone, B., Al-Zahrani, A. Modeling Drying Behavior of an Aqueous Chitosan Single Droplet Using the Reaction Engineering Approach. AAPS PharmSciTech 21, 315 (2020). https://doi.org/10.1208/s12249-020-01853-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01853-3

KEY WORDS

Navigation