Skip to main content
Log in

Co-Delivery of Hispolon and Doxorubicin Liposomes Improves Efficacy Against Melanoma Cells

  • Research Article
  • Theme: Formulation and Delivery of Natural Products
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Hispolon is a small molecular weight polyphenol that has antioxidant, anti-inflammatory, and anti-proliferative activities. Our recent study has demonstrated hispolon as a potent apoptosis inducer in melanoma cell lines. Doxorubicin is a broad spectrum first-line treatment for various kinds of cancers. In this study, co-delivery of doxorubicin and hispolon using a liposomal system in B16BL6 melanoma cell lines for synergistic cytotoxic effects was investigated. Liposomes were prepared using a lipid film hydration method and loaded with doxorubicin or hispolon. The formulations were characterized for particle size distribution, release profile, and encapsulation efficiency (EE). In addition, in vitro cytotoxicity, in vitro cell apoptosis, and cellular uptake were evaluated. Liposomes exhibited small particle size (mean diameter ~ 100 nm) and narrow size distribution (polydispersity index (< 0.2) and high drug EE% (> 90%). The release from liposomes showed slower release compared to free drug solution as an additional time required for the release of drug from the liposome lipid bilayer. Liposome loaded with doxorubicin or hispolon exhibited significantly higher cytotoxicity against B16BL6 melanoma cells as compared to doxorubicin solution or hispolon solution. Likewise, co-delivery of hispolon and doxorubicin liposomes showed two-fold and three-fold higher cytotoxicity, as compared to hispolon liposomes or doxorubicin liposomes, respectively. In addition, co-delivery of doxorubicin and hispolon in liposomes enhanced apoptosis more than the individual drugs in the liposome formulation. In conclusion, the co-delivery of hispolon and doxorubicin could be a promising therapeutic approach to improve clinical outcomes against melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Skin Cancer Foundation. Skin Cancer Facts & Statistics, what you need to know. 2020, April 16. https://www.skincancer.org/skin-cancer-information/skin-cancer-facts/.

  2. Bharath A, Turner R. Impact of climate change on skin cancer. J R Soc Med. 2009;102(6):215–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Klefström P, Gröhn P, Heinonen E, Holsti L, Holsti P. Adjuvant postoperative radiotherapy, chemotherapy, and immunotherapy in stage III breast cancer. II. 5-year results and influence of levamisole. Cancer. 1987;60(5):936–42.

    PubMed  Google Scholar 

  4. Zhang Y, Yang C, Wang W, Liu J, Liu Q, Huang F, et al. Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Sci Rep. 2016;6(1):21225. https://doi.org/10.1038/srep21225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kang RK, Mishr N, Rai VK. Guar gum micro-particles for targeted co-delivery of doxorubicin and metformin HCL for improved specificity and efficacy against colon cancer: in vitro and in vivo studies. AAPS PharmSciTech. 2020;21(2):1–11.

    Google Scholar 

  6. Abraham SA, Waterhouse DN, Mayer LD, Cullis PR, Madden TD, Bally MB. The liposomal formulation of doxorubicin. Methods Enzymol. 391: Elsevier; 2005. p. 71–97.

  7. McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM. Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther. 2017;31(1):63–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Harris PA, Garai AS, Valenzuela MA. Reduction of doxorubicin (adriamycin) bone marrow toxicity. J Pharm Sci. 1975;64(9):1574–6.

    CAS  PubMed  Google Scholar 

  9. Nielsen D, Maare C, Skovsgaard T. Cellular resistance to anthracyclines. Gen Pharmacology: The Vascular System. 1996;27(2):251–5. https://doi.org/10.1016/0306-3623(95)02013-6.

    Article  CAS  PubMed  Google Scholar 

  10. Wang S, Ren W, Liu J, Lahat G, Torres K, Lopez G, et al. TRAIL and doxorubicin combination induces proapoptotic and antiangiogenic effects in soft tissue sarcoma in vivo. Clin Cancer Res. 2010;16(9):2591–604.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sharma G, Tyagi AK, Singh RP, Chan DC, Agarwal R. Synergistic anticancer effects of grape seed extract and conventional cytotoxic agent doxorubicin against human breast carcinoma cells. Breast Cancer Res Treat. 2004;85(1):1–12.

    CAS  PubMed  Google Scholar 

  12. Hsieh M-J, Chien S-Y, Chou Y-E, Chen C-J, Chen J, Chen M-K. Hispolon from Phellinus linteus possesses mediate caspases activation and induces human nasopharyngeal carcinomas cells apoptosis through ERK1/2, JNK1/2 and p38 MAPK pathway. Phytomedicine. 2014;21(12):1746–52.

    CAS  PubMed  Google Scholar 

  13. Kim JH, Kim YC, Park B. Hispolon from Phellinus linteus induces apoptosis and sensitizes human cancer cells to the tumor necrosis factor-related apoptosis-inducing ligand through upregulation of death receptors. Oncol Rep. 2016;35(2):1020–6.

    CAS  PubMed  Google Scholar 

  14. Huang G-J, Yang C-M, Chang Y-S, Amagaya S, Wang H-C, Hou W-C, et al. Hispolon suppresses SK-Hep1 human hepatoma cell metastasis by inhibiting matrix metalloproteinase-2/9 and urokinase-plasminogen activator through the PI3K/Akt and ERK signaling pathways. J Agric Food Chem. 2010;58(17):9468–75.

    CAS  PubMed  Google Scholar 

  15. Wu Q, Kang Y, Zhang H, Wang H, Liu Y, Wang J. The anticancer effects of hispolon on lung cancer cells. Biochem Biophys Res Commun. 2014;453(3):385–91.

    CAS  PubMed  Google Scholar 

  16. Al Saqr A, Majrashi M, Alrbyawi H, Govindarajulu M, Fujihashi A, Gottumukkala S, et al. Elucidating the anti-melanoma effect and mechanisms of Hispolon. Life Sci. 2020;256:117702.

    PubMed  Google Scholar 

  17. Zhao Z, Sun YS, Chen W, Lv LX, Li YQ. Hispolon inhibits breast cancer cell migration by reversal of epithelial-to-mesenchymal transition via suppressing the ROS/ERK/Slug/E-cadherin pathway. Oncol Rep. 2016;35(2):896–904.

    CAS  PubMed  Google Scholar 

  18. Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286.

    PubMed  PubMed Central  Google Scholar 

  19. Kang JY, Eggert M, Mouli S, Aljuffali I, Fu X, Nie B, et al. Pharmacokinetics, antitumor and cardioprotective effects of liposome-encapsulated phenylaminoethyl selenide in human prostate cancer rodent models. Pharm Res. 2015;32(3):852–62.

    CAS  PubMed  Google Scholar 

  20. Bartlett GR. Phosphorus assay in column chromatography. J Biol Chem. 1959;234:466–8.

    CAS  PubMed  Google Scholar 

  21. Sadzuka Y, Takabe H, Sonobe T. Liposomalization of SN-38 as active metabolite of CPT-11. J Control Release. 2005;108(2–3):453–9.

    CAS  PubMed  Google Scholar 

  22. Chen L, Alrbyawi H, Poudel I, Arnold RD, Babu RJ. Co-delivery of doxorubicin and ceramide in a liposomal formulation enhances cytotoxicity in murine B16BL6 melanoma cell lines. AAPS PharmSciTech. 2019;20(3):99.

    CAS  PubMed  Google Scholar 

  23. Perumal V, Banerjee S, Das S, Sen R, Mandal M. Effect of liposomal celecoxib on proliferation of colon cancer cell and inhibition of DMBA-induced tumor in rat model. Cancer Nanotechnol. 2011;2(1–6):67–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Haeri A, Sadeghian S, Rabbani S, Anvari MS, Boroumand MA, Dadashzadeh S. Use of remote film loading methodology to entrap sirolimus into liposomes: preparation, characterization and in vivo efficacy for treatment of restenosis. Int J Pharm. 2011;414(1–2):16–27.

    CAS  PubMed  Google Scholar 

  25. Bajelan E, Haeri A, Vali AM, Ostad SN, Dadashzadeh S. Co-delivery of doxorubicin and PSC 833 (Valspodar) by stealth nanoliposomes for efficient overcoming of multidrug resistance. J Pharm Pharm Sci. 2012;15(4):568–82.

    CAS  PubMed  Google Scholar 

  26. Haran G, Cohen R, Bar LK, Barenholz Y. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1993;1151(2):201–15.

    CAS  Google Scholar 

  27. Hood R, Vreeland W, DeVoe DL. Microfluidic remote loading for rapid single-step liposomal drug preparation. Lab Chip. 2014;14(17):3359–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Deamer DW, Prince RC, Crofts AR. The response of fluorescent amines to pH gradients across liposome membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1972;274(2):323–35.

    CAS  Google Scholar 

  29. Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1(3):297.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Charrois GJ, Allen TM. Drug release rate influences the pharmacokinetics, biodistribution, therapeutic activity, and toxicity of pegylated liposomal doxorubicin formulations in murine breast cancer. Biochim Biophys Acta Biomembr. 2004;1663(1–2):167–77.

    CAS  Google Scholar 

  31. Schilt Y, Berman T, Wei X, Barenholz Y, Raviv U. Using solution X-ray scattering to determine the high-resolution structure and morphology of PEGylated liposomal doxorubicin nanodrugs. Biochim Biophys Acta Gen Subj. 2016;1860(1, Part A):108–19. https://doi.org/10.1016/j.bbagen.2015-09.012

  32. Mehn D, Iavicoli P, Cabaleiro N, Borgos SE, Caputo F, Geiss O, et al. Analytical ultracentrifugation for analysis of doxorubicin loaded liposomes. Int J Pharm. 2017;523(1):320–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wibroe PP, Ahmadvand D, Oghabian MA, Yaghmur A, Moghimi SM. An integrated assessment of morphology, size, and complement activation of the PEGylated liposomal doxorubicin products Doxil®, Caelyx®, DOXOrubicin, and SinaDoxosome. J Control Release. 2016;221:1–8.

    CAS  PubMed  Google Scholar 

  34. Nag OK, Awasthi V. Surface engineering of liposomes for stealth behavior. Pharmaceutics. 2013;5(4):542–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang T, Cui FD, Choi MK, Cho JW, Chung SJ, Shim CK, et al. Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int J Pharm. 2007;338(1–2):317–26.

    CAS  PubMed  Google Scholar 

  36. Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev. 1999;51(4):691–744.

    CAS  PubMed  Google Scholar 

  37. Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin. Clin Pharmacokinet. 2003;42(5):419–36.

    CAS  PubMed  Google Scholar 

  38. Chen Y-C, Chang H-Y, Deng J-S, Chen J-J, Huang S-S, Lin I-H, et al. Hispolon from Phellinus linteus induces G0/G1 cell cycle arrest and apoptosis in NB4 human leukaemia cells. Am J Chin Med. 2013;41(06):1439–57. https://doi.org/10.1142/S0192415X13500961.

    Article  CAS  PubMed  Google Scholar 

  39. Mousavi SH, Moallem SA, Mehri S, Shahsavand S, Nassirli H, Malaekeh-Nikouei B. Improvement of cytotoxic and apoptogenic properties of crocin in cancer cell lines by its nanoliposomal form. Pharm Biol. 2011;49(10):1039–45.

    CAS  PubMed  Google Scholar 

  40. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102.

    PubMed  PubMed Central  Google Scholar 

  41. Pagano RE, Weinstein JN. Interactions of liposomes with mammalian cells. Annu Rev Biophys Bioeng. 1978;7:435–68.

    CAS  PubMed  Google Scholar 

  42. Zheng RR, Hu W, Sui CG, Ma N, Jiang YH. Effects of doxorubicin and gemcitabine on the induction of apoptosis in breast cancer cells. Oncol Rep. 2014;32(6):2719–25.

    CAS  PubMed  Google Scholar 

  43. Shavit L, Lifschitz MD, Gabizon A, Kwa M, Muggia F, Slotki I. Pegylated liposomal doxorubicin and renal thrombotic microangiopathy: an under-recognized complication of prolonged treatment for ovarian cancer. Kidney Int. 2014;85(1):213.

    CAS  PubMed  Google Scholar 

  44. Zhao J-y, Ma X-l, Li Z-m, Deng R, Wang S-m, Shen G-b, et al. Down-regulation of MFG-E8 by RNA interference combined with doxorubicin triggers melanoma destruction. Clin Exp Med. 2015;15(2):127–35.

    CAS  PubMed  Google Scholar 

  45. Olusanya TO, Haj Ahmad RR, Ibegbu DM, Smith JR, Elkordy AA. Liposomal drug delivery systems and anticancer drugs. Molecules. 2018;23(4):907.

    PubMed Central  Google Scholar 

  46. Franco YL, Vaidya TR, Ait-Oudhia S. Anticancer and cardio-protective effects of liposomal doxorubicin in the treatment of breast cancer. Breast Cancer (Dove Med Press). 2018;10:131–41.

    CAS  Google Scholar 

  47. Gabizon AA, Patil Y, La-Beck NM. New insights and evolving role of pegylated liposomal doxorubicin in cancer therapy. Drug Resist Updat. 2016;29:90–106.

    PubMed  Google Scholar 

  48. Farzaneh H, Ebrahimi Nik M, Mashreghi M, Saberi Z, Jaafari MR, Teymouri M. A study on the role of cholesterol and phosphatidylcholine in various features of liposomal doxorubicin: from liposomal preparation to therapy. Int J Pharm. 2018;551(1):300–8.

    CAS  PubMed  Google Scholar 

  49. Nurgali K, Jagoe RT, Abalo R. Adverse effects of cancer chemotherapy: anything new to improve tolerance and reduce sequelae? Front Pharmacol. 2018;9:245.

    PubMed  PubMed Central  Google Scholar 

  50. Rivera E. Liposomal anthracyclines in metastatic breast cancer: clinical update. Oncologist. 2003;8(90002):3–9.

    CAS  PubMed  Google Scholar 

  51. Zhang Y, Zhai M, Chen Z, Han X, Yu F, Li Z, et al. Dual-modified liposome codelivery of doxorubicin and vincristine improve targeting and therapeutic efficacy of glioma. Drug Delivery. 2017;24(1):1045–55.

    CAS  PubMed  Google Scholar 

  52. Kang XJ, Wang HY, Peng HG, Chen BF, Zhang WY, Wu AH, et al. Codelivery of dihydroartemisinin and doxorubicin in mannosylated liposomes for drug-resistant colon cancer therapy. Acta Pharmacol Sin. 2017;38(6):885–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Tang J, Zhang L, Gao H, Liu Y, Zhang Q, Ran R, et al. Codelivery of doxorubicin and P-gp inhibitor by a reduction-sensitive liposome to overcome multidrug resistance, enhance anti-tumor efficiency and reduce toxicity. Drug Delivery. 2016;23(4):1130–43.

    CAS  PubMed  Google Scholar 

  54. Lakkadwala S, Singh J. Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model. Colloid Surface B. 2019;173:27–35. https://doi.org/10.1016/j.colsurfb.2018.09.047.

    Article  CAS  Google Scholar 

  55. Chen W, Zhao Z, Li L, Wu B, Chen SF, Zhou H, et al. Hispolon induces apoptosis in human gastric cancer cells through a ROS-mediated mitochondrial pathway. Free Radic Biol Med. 2008;45(1):60–72.

    PubMed  Google Scholar 

  56. Huang GJ, Deng JS, Huang SS, Hu ML. Hispolon induces apoptosis and cell cycle arrest of human hepatocellular carcinoma Hep3B cells by modulating ERK phosphorylation. J Agric Food Chem. 2011;59(13):7104–13.

    CAS  PubMed  Google Scholar 

  57. Brouckaert P, Takahashi N, van Tiel ST, Hostens J, Eggermont AM, Seynhaeve AL, et al. Tumor necrosis factor-α augmented tumor response in B16BL6 melanoma-bearing mice treated with stealth liposomal doxorubicin (Doxil®) correlates with altered Doxil® pharmacokinetics. Int J Cancer. 2004;109(3):442–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the Auburn University-Intramural Grant Program (AU-IGP), Auburn University Research Initiative in Cancer (AURIC), and Auburn University Presidential Awards for Interdisciplinary Research (PAIR) grants for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jayachandra Babu.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest or competing interests relevant to the content of this article.

Additional information

Guest Editors: Harsh Chauhan, Abhijit Date and Sonali Dhindwal

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Saqr, A., Aldawsari, M.F., Alrbyawi, H. et al. Co-Delivery of Hispolon and Doxorubicin Liposomes Improves Efficacy Against Melanoma Cells. AAPS PharmSciTech 21, 304 (2020). https://doi.org/10.1208/s12249-020-01846-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01846-2

Key Words

Navigation