Skip to main content

Advertisement

Log in

Emerging Trends in Topical Delivery of Curcumin Through Lipid Nanocarriers: Effectiveness in Skin Disorders

  • Review Article
  • Theme: Formulation and Delivery of Natural Products
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Curcumin is a unique molecule naturally obtained from rhizomes of Curcuma longa. Curcumin has been reported to act on diverse molecular targets like receptors, enzymes, and co-factors; regulate different cellular signaling pathways; and modulate gene expression. It suppresses expression of main inflammatory mediators like interleukins, tumor necrosis factor, and nuclear factor κB which are involved in the regulation of genes causing inflammation in most skin disorders. The topical delivery of curcumin seems to be more advantageous in providing a localized effect in skin diseases. However, its low aqueous solubility, poor skin permeation, and degradation hinder its application for commercial use despite its enormous potential. Lipid-based nanocarrier systems including liposomes, niosomes, solid lipid nanoparticles, nanostructured lipid carriers, lyotropic liquid crystal nanoparticles, lipospheres, and lipid nanocapsules have found potential as carriers to overcome the issues associated with conventional topical dosage forms. Nano-size, lipophilic nature, viscoelastic properties, and occlusive effect of lipid nanocarriers provide high drug loading, hydration of skin, stability, enhanced permeation through the stratum corneum, and slow release of curcumin in the targeted skin layers. This review particularly focuses on the application of lipid nanocarriers for the topical delivery of curcumin in the treatment of various skin diseases. Furthermore, preclinical studies and patents have also indicated the emerging commercialization potential of curcumin-loaded lipid nanocarriers for effective drug delivery in skin disorders.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gera M, Sharma N, Ghosh M, Huynh DL, Lee SJ, Min T, et al. Nanoformulations of curcumin: an emerging paradigm for improved remedial application. Oncotarget. 2017;8(39):66680–98.

    Google Scholar 

  2. Fadus MC, Lau C, Bikhchandani J, Lynch HT. Curcumin: an age-old anti-inflammatory and anti-neoplastic agent. J Tradit Complement Med. 2017;7(3):339–46.

    Google Scholar 

  3. Panahi Y, Fazlolahzadeh O, Atkin SL, Majeed M, Butler AE, Johnston TP, et al. Evidence of curcumin and curcumin analogue effects in skin diseases: a narrative review. J Cell Physiol. 2019;234(2):1165–78.

    CAS  Google Scholar 

  4. Thangapazham RL, Sharma A, Maheshwari RK. Beneficial role of curcumin in skin diseases. Adv Exp Med Biol. 2007;595:343–57.

    Google Scholar 

  5. Singhvi G, Hejmady S, Rapalli VK, Dubey SK, Dubey S. Nanocarriers for topical delivery in psoriasis. In: Shegokar R, editor. Delivery of drugs. Germany: Elsevier Inc.; 2020. p. 75–96.

    Google Scholar 

  6. Velayudhan KC, Dikshit N, Abdul NM. Ethnobotany of turmeric (Curcuma longa L.). Indian J Tradit Knowl. 2012;11(4):607–14.

    Google Scholar 

  7. Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr. 2020;60(6):887–939.

    CAS  Google Scholar 

  8. Vinardell MP, Mitjans M. Nanocarriers for delivery of antioxidants on the skin. Cosmetics. 2015;2(4):342–54.

    CAS  Google Scholar 

  9. Laura V, Mattia F, Roberta G, Federico I, Emi D, Chiara T, et al. Potential of curcumin in skin disorders. Nutrients. 2019;11(9):2169.

    Google Scholar 

  10. Del Prado-Audelo ML, Caballero-Florán IH, Meza-Toledo JA, Mendoza-Muñoz N, González-Torres M, Florán B, et al. Formulations of curcumin nanoparticles for brain diseases. Biomolecules. 2019;9(2):1–28.

    Google Scholar 

  11. Prasad S, Tyagi AK, Aggarwal BB. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat. 2014;46(1):2–18.

    CAS  Google Scholar 

  12. Hewlings S, Kalman D. Curcumin: a review of its’ effects on human health. Foods. 2017;6(10):92.

    Google Scholar 

  13. Mahant S, Rao R, Nanda S. Chapter 3. Nanostructured lipid carriers: revolutionizing skin care and topical therapeutics. In: Grumezescu AM, editor. Design of nanostructures for antimicrobial, antioxidant and nutraceutical applications. Cambridge: Elsevier Inc; 2018. p. 97–136.

    Google Scholar 

  14. Singhvi G, Patil S, Girdhar V, Dubey SK. Nanocarriers for topical drug delivery: approaches and advancements. Nanosci Nanotechnol Asia. 2018;9(3):329–36.

    Google Scholar 

  15. Ben Yehuda Greenwald M, Frušić-Zlotkin M, Soroka Y, Ben Sasson S, Bitton R, Bianco-Peled H, et al. Curcumin protects skin against uvb-induced cytotoxicity via the Keap1-Nrf2 pathway: the use of a microemulsion delivery system. Oxidative Med Cell Longev. 2017;2017.

  16. Patel NA, Patel NJ, Patel RP. Formulation and evaluation of curcumin gel for topical application. Pharm Dev Technol. 2009;14(1):83–92.

    Google Scholar 

  17. Jain S, Krishna Cherukupalli S, Mahmood A, Gorantla S, Krishna Rapalli V, Kumar Dubey S, et al. Emerging nanoparticulate systems: preparation techniques and stimuli responsive release characteristics. J Appl Pharm Sci. 2019;9(08):130–43.

    CAS  Google Scholar 

  18. Wang S, Tan M, Zhong Z, Chen M, Wang Y. Nanotechnologies for curcumin: an ancient puzzler meets modern solutions. J Nanomater. 2011;2011:1–8.

    Google Scholar 

  19. Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discov Today. 2012;17(1–2):71–80.

    CAS  Google Scholar 

  20. Battaglia L, Gallarate M. Lipid nanoparticles: state of the art , new preparation methods and challenges in drug delivery. 2012;9 (5): 497–508.

  21. Mahmood A, Krishna V, Waghule T, Gorantla S, Kumar S, Narayan R, et al. Spectrochimica Acta part A : molecular and biomolecular spectroscopy UV spectrophotometric method for simultaneous estimation of betamethasone valerate and tazarotene with absorption factor method : application for in-vitro and ex-vivo characterization of. Spectrochim Acta A Mol Biomol Spectrosc. 2020;235:118310.

    CAS  Google Scholar 

  22. Sala M, Diab R, Elaissari A, Fessi H. Lipid nanocarriers as skin drug delivery systems: properties, mechanisms of skin interactions and medical applications. Int J Pharm. 2018;535(1–2):1–17.

    CAS  Google Scholar 

  23. Hua S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front Pharmacol. Frontiers Media S.A. 2015;6:219.

    Google Scholar 

  24. Shrotriya S, Ranpise N, Satpute P, Vidhate B. Skin targeting of curcumin solid lipid nanoparticles-engrossed topical gel for the treatment of pigmentation and irritant contact dermatitis. Artif Cells Nanomed Biotechnol. 2018;46(7):1471–82.

    CAS  Google Scholar 

  25. Goncalez ML, Rigon RB, Pereira-Da-Silva MA, Chorilli M. Curcumin-loaded cationic solid lipid nanoparticles as a potential platform for the treatment of skin disorders. Pharmazie. 2017;72(12):721–7.

    CAS  Google Scholar 

  26. Zamarioli CM, Martins RM, Carvalho EC, Freitas LAP. Nanoparticles containing curcuminoids (Curcuma longa): development of topical delivery formulation. Braz J Pharmacogn. 2015;25(1):53–60.

    CAS  Google Scholar 

  27. Chirio D, Gallarate M, Trotta M, Carlotti ME, Gaudino EC, Cravotto G. Influence of α- and γ- cyclodextrin lipophilic derivatives on curcumin-loaded SLN. J Incl Phenom Macrocycl Chem. 2009;65(3):391–402.

    CAS  Google Scholar 

  28. Chen P, Zhang H, Cheng S, Zhai G, Shen C. Development of curcumin loaded nanostructured lipid carrier based thermosensitive in situ gel for dermal delivery. Colloids Surf A Physicochem Eng Asp. 2016;506:356–62.

    CAS  Google Scholar 

  29. Das MK, Kumar R. Development of curcumin nanoniosomes for skin cancer chemoprevention. Int J ChemTech Res. 2015;7:747–54.

    Google Scholar 

  30. Kumar K, Rai AK. Development and evaluation of proniosome- encapsulated curcumin for transdermal administration. Trop J Pharm Res. 2011;10(6):697–703.

    CAS  Google Scholar 

  31. Tavano L, Muzzalupo R, Picci N, De Cindio B. Co-encapsulation of lipophilic antioxidants into niosomal carriers: percutaneous permeation studies for cosmeceutical applications. Colloids Surf B: Biointerfaces. 2014;114:144–9.

    CAS  Google Scholar 

  32. Madan S, Nehate C, Barman TK, Rathore AS, Koul V. Design, preparation, and evaluation of liposomal gel formulations for treatment of acne: in vitro and in vivo studies. Drug Dev Ind Pharm. 2019;45(3):395–404.

    CAS  Google Scholar 

  33. Choudhary V, Shivakumar H, Ojha H. Curcumin-loaded liposomes for wound healing: preparation, optimization, in-vivo skin permeation and bioevaluation. J Drug Deliv Sci Technol. 2019;49:683–91.

    CAS  Google Scholar 

  34. Peram MR, Jalalpure S, Kumbar V, Patil S, Joshi S, Bhat K, et al. Factorial design based curcumin ethosomal nanocarriers for the skin cancer delivery: in vitro evaluation. J Liposome Res. 2019;29(3):291–311.

    CAS  Google Scholar 

  35. Esposito E, Ravani L, Mariani P, Contado C, Drechsler M, Puglia C, et al. Curcumin containing monoolein aqueous dispersions : a preformulative study. Mater Sci Eng C. 2013;33(8):4923–34.

    CAS  Google Scholar 

  36. Fonseca-santos B, Rodero CF. Design, characterization, and biological evaluation of curcumin-loaded surfactant-based systems for topical drug delivery. 2016;11: 4553–62.

  37. Ali MS, Alam MS, Imam FI, Siddiqui MR. Topical nanoemulsion of turmeric oil for psoriasis: characterization, ex vivo and in vivo assessment. Int J Drug Deliv. 2012;4(2):184–97.

    CAS  Google Scholar 

  38. Chime SA, Kenechukwu FC, Attama AA. Nanoemulsions — advances in formulation, characterization and applications in drug delivery. In: Sezer AD, editor. Application of nanotechnology in drug delivery: BoD-Books on Demand; 2014. p. 77–126.

  39. Ahmad N, Ahmad R, Al-Qudaihi A, Alaseel SE, Fita IZ, Khalid MS, et al. Preparation of a novel curcumin nanoemulsion by ultrasonication and its comparative effects in wound healing and the treatment of inflammation. RSC Adv. 2019;9(35):20192–206.

    CAS  Google Scholar 

  40. Algahtani MS, Ahmad MZ, Ahmad J. Nanoemulsion loaded polymeric hydrogel for topical delivery of curcumin in psoriasis. J Drug Deliv Sci Technol. 2020;59:101847.

    CAS  Google Scholar 

  41. Shetty T, Dubey A, Hebbar S, Charyulu N. Antifungal and antioxidant therapy for the treatment of fungal infection with microemulsion gel containing curcumin and vitamin C. Asian J. Pharm. 2017;11(4):S709.

  42. Altamimi MA, Kazi M, Hadi Albgomi M, Ahad A, Raish M. Development and optimization of self-nanoemulsifying drug delivery systems (SNEDDS) for curcumin transdermal delivery: an anti-inflammatory exposure. Drug Dev Ind Pharm. 2019;45(7):1073–8.

    CAS  Google Scholar 

  43. Souto EB, Baldim I, Oliveira WP, Rao R, Yadav N, Gama FM, et al. SLN and NLC for topical, dermal, and transdermal drug delivery. Expert Opin Drug Deliv. Taylor and Francis Ltd. 2020;17:357–77.

    CAS  Google Scholar 

  44. Chuang SY, Lin CH, Huang TH, Fang JY. Lipid-based nanoparticles as a potential delivery approach in the treatment of rheumatoid arthritis. Nanomaterials. MDPI AG. 2018;8:42.

    Google Scholar 

  45. Gupta M, Tiwari S, Vyas SP. Influence of various lipid core on characteristics of SLNs designed for topical delivery of fluconazole against cutaneous candidiasis. Pharm Dev Technol. 2013;18(3):550–9.

    CAS  Google Scholar 

  46. Madan JR, Khude PA, Dua K. Development and evaluation of solid lipid nanoparticles of mometasone furoate for topical delivery. Int. J. Pharm. 2014;4(2):60.

  47. Nanayakkara G. Synergistically active curcumin resveratrol solid lipid nanoparticles for treatment of melanoma. Doctoral Dissertation, Creighton University; 2019.

  48. Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother. Elsevier Masson SAS. 2018;103:598–613.

  49. Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009;366:170–84.

    CAS  Google Scholar 

  50. Yallapu MM, Nagesh PKB, Jaggi M, Chauhan SC. Therapeutic applications of curcumin nanoformulations. AAPS J. 2015 17(6):1341–56.

  51. Waghule T, Rapalli VK, Singhvi G, Manchanda P, Hans N, Dubey SK, et al. Voriconazole loaded nanostructured lipid carriers based topical delivery system: QbD based designing, characterization, in-vitro and ex-vivo evaluation. J Drug Deliv Sci Technol. 2019;52:303–15.

    CAS  Google Scholar 

  52. Rapalli VK, Kaul V, Gorantla S, Waghule T, Dubey SK, Pandey MM, et al. UV spectrophotometric method for characterization of curcumin loaded nanostructured lipid nanocarriers in simulated conditions: method development, in-vitro and ex-vivo applications in topical delivery. Spectrochim Acta A Mol Biomol Spectrosc. 2020;224:117392.

    CAS  Google Scholar 

  53. Rapalli VK, Kaul V, Waghule T, Gorantla S, Sharma S, Roy A, et al. Curcumin loaded nanostructured lipid carriers for enhanced skin retained topical delivery: optimization, scale-up, in-vitro characterization and assessment of ex-vivo skin deposition. Eur J Pharm Sci. 2020;152:105438.

    CAS  Google Scholar 

  54. Riaz A, Ahmed N, Khan MI, ul HI, ur RA, Khan GM. Formulation of topical NLCs to target macrophages for cutaneous leishmaniasis. J Drug Deliv Sci Technol. 2019;54:101232.

    CAS  Google Scholar 

  55. Esposito E, Sticozzi C, Ravani L, Drechsler M, Muresan XM, Cervellati F, et al. Effect of new curcumin-containing nanostructured lipid dispersions on human keratinocytes proliferative responses. Exp Dermatol. 2015 Jun;24(6):449–54.

    CAS  Google Scholar 

  56. Akbarzadeh A, Rezaei-sadabady R, Davaran S, Joo SW, Zarghami N. Liposome : classification , preparation , and applications. 2013:1–9.

  57. Lemos CN, Pereira F, Dalmolin LF, Cubayachi C, Ramos DN, Lopez RFV. Chapter 6. Nanoparticles influence in skin penetration of drugs: in vitro and in vivo characterization. In: Grumezescu AM, editor. Nanostructures for the engineering of cells, tissues and organs. Cambridge: Elsevier Inc; 2018. p. 187–248.

    Google Scholar 

  58. Desmet E, Bracke S, Forier K, Taevernier L, Stuart MCA, De Spiegeleer B, et al. An elastic liposomal formulation for RNAi-based topical treatment of skin disorders : proof-of-concept in the treatment of psoriasis. Int J Pharm. 2016;500(1–2):268–74.

    CAS  Google Scholar 

  59. Ternullo S, Gagnat E, Julin K, Johannessen M, Basnet P, Vanić Ž, et al. Liposomes augment biological benefits of curcumin for multitargeted skin therapy. Eur J Pharm Biopharm. 2019;144(July):154–64.

    CAS  Google Scholar 

  60. Akbik D, Ghadiri M, Chrzanowski W, Rohanizadeh R. Curcumin as a wound healing agent. Life Sci. 2014;116(1):1–7.

    CAS  Google Scholar 

  61. Zhang Y, Xia Q, Li Y, He Z, Li Z, Guo T, et al. CD44 assists the topical anti-psoriatic efficacy of curcumin-loaded hyaluronan-modified ethosomes: a new strategy for clustering drug in inflammatory skin. Theranostics. 2019;9(1):48–64.

    Google Scholar 

  62. Geusens B, Strobbe T, Bracke S, Dynoodt P, Sanders N, Van GM, et al. Lipid-mediated gene delivery to the skin. Eur J Pharm Sci. 2011;43:199–211.

    CAS  Google Scholar 

  63. Nadzir MM, Wei Fen T, Rahman A, Siti M, Hisham F. Size and stability of curcumin niosomes from combinations of Tween 80 and Span 80 (Saiz dan Kestabilan Niosom Kurkumin daripada Gabungan Tween 80 dan Span 80). Sains Malays. 2017;46(12):2455–60.

    Google Scholar 

  64. Sadeghi Ghadi Z, Dinarvand R, Asemi N, Talebpour Amiri F, Ebrahimnejad P. Preparation, characterization and in vivo evaluation of novel hyaluronan containing niosomes tailored by Box-Behnken design to co-encapsulate curcumin and quercetin. Eur J Pharm Sci. 2019 Mar;130:234–46.

    CAS  Google Scholar 

  65. Kumar Gupta N, Dixit VK. Development and evaluation of vesicular system for curcumin delivery. Arch Dermatol Res. 2011;303(2):89–101.

    Google Scholar 

  66. Nasr M, Mansour S, Mortada ND, El Shamy AA. Lipospheres as carriers for topical delivery of aceclofenac: preparation, characterization and in vivo evaluation. AAPS PharmSciTech. 2008 9(1):154–62.

  67. Yalavarthi P, Dudala T, Mudumala N, Pasupati V, Thanniru J, Vadlamudi H, et al. A perspective overview on lipospheres as lipid carrier systems. Int J Pharm Investig. 2014;4(4):149–55.

    Google Scholar 

  68. Jain A, Pooladanda V, Bulbake U, Doppalapudi S, Rafeeqi TA, Godugu C, et al. Liposphere mediated topical delivery of thymoquinone in the treatment of psoriasis. Nanomed Nanotechnol Biol Med. 2017;13(7):2251–62.

    CAS  Google Scholar 

  69. Jain A, Doppalapudi S, Domb AJ, Khan W. Tacrolimus and curcumin co-loaded liposphere gel: synergistic combination towards management of psoriasis. J Control Release. 2016 243:132–45.

  70. Waghule T, Rapalli VK, Singhvi G, Gorantla S, Khosa A, Dubey SK, et al. Design of temozolomide-loaded proliposomes and lipid crystal nanoparticles with industrial feasible approaches: comparative assessment of drug loading, entrapment efficiency, and stability at plasma pH. J Liposome Res. 2020;0(0):1–11.

    Google Scholar 

  71. Molly BA, Prasanthi NL. Cubic liquid crystalline nanoparticles (cubosomes): a novel carrier for drug delivery. Int J Pharm Sci Res. 2019;10(3):973–84.

    CAS  Google Scholar 

  72. Singhvi G, Rapalli VK, Nagpal S, Dubey SK, Saha RN. Nanocarriers as potential targeted drug delivery for cancer therapy. Nanosci Med. 2020;1:51–88.

    Google Scholar 

  73. Madheswaran T, Kandasamy M, Bose RJ, Karuppagounder V. Current potential and challenges in the advances of liquid crystalline nanoparticles as drug delivery systems. Drug Discov Today. Elsevier Ltd. 2019;24:1405–12.

    CAS  Google Scholar 

  74. Singhvi G, Banerjee S, Khosa A. Lyotropic liquid crystal nanoparticles: a novel improved lipidic drug delivery system. In: Grumezescu AM, editor. Organic materials as smart nanocarriers for drug delivery. Cambridge: William Andrew Publishing; 2018. p. 471–517.

    Google Scholar 

  75. Gazga-Urioste C, Rivera-Becerril E, Pérez-Hernández G, Angélica Noguez-Méndez N, Faustino-Vega A, Tomás Q-BC. Physicochemical characterization and thermal behavior of hexosomes containing ketoconazole as potential topical antifungal delivery system. Drug Dev Ind Pharm. 2019 45(1):168–76.

  76. Girdhar V, Patil S, Banerjee S, Singhvi G. Nanocarriers for drug delivery: mini review. Curr Nanomed. 2018;8(2):88–99.

    CAS  Google Scholar 

  77. Freag MS, Torky AS, Nasra MM, Abdelmonsif DA, Abdallah OY. Liquid crystalline nanoreservoir releasing a highly skin-penetrating berberine oleate complex for psoriasis management. Nanomedicine. 2019;14(8):931–54.

    CAS  Google Scholar 

  78. Esposito E, Ravani L, Mariani P, Huang N, Boldrini P, Drechsler M, et al. European Journal of Pharmaceutics and Biopharmaceutics Effect of nanostructured lipid vehicles on percutaneous absorption of curcumin. Eur J Pharm Biopharm. 2014;86(2):121–32.

    CAS  Google Scholar 

  79. Archana A, Sri KV, Madhuri M, Kumar CA. Curcumin loaded nano cubosomal hydrogel: preparation, in vitro characterization and antibacterial activity. Chem. Sci. Trans. 2015;4:75–80.

  80. Heurtault B, Saulnier P, Pech B, Jacques Emile Proust JPB. A novel phase inversion-based process for the preparation of lipid nanocarriers.pdf. Pharm Res. 2002;19(6):875–80.

    CAS  Google Scholar 

  81. Hatahet T, Morille M, Shamseddin A, Aubert-Pouëssel A, Devoisselle JM, Bégu S. Dermal quercetin lipid nanocapsules: influence of the formulation on antioxidant activity and cellular protection against hydrogen peroxide. Int J Pharm. 2017;518(1–2):167–76.

    CAS  Google Scholar 

  82. Mazzarino L, Bellettini IC, Minatti E. Curcumin-loaded polymeric and lipid nanocapsules : preparation , characterization and chemical stability evaluation curcumin-loaded polymeric and lipid nanocapsules : preparation , characterization and chemical stability evaluation. Lat Am J Pharm. 2010;29(6):933–40.

    CAS  Google Scholar 

  83. Truc H, Nguyen P, Munnier E, Perse X, Vial F, Chourpa I, et al. Qualitative and quantitative study of the potential of lipid nanocapsules of one hundred twenty nanometers for the topical administration of hydrophobic molecules. J Pharm Sci. 2016: 105(10):3191–8.

  84. Sarafian G, Afshar M, Mansouri P, Asgarpanah J, Raoufinejad K, Rajabi M. Topical turmeric microemulgel in the management of plaque psoriasis; a clinical evaluation. Iran J Pharm Res. 2015;14(3):865–76.

    CAS  Google Scholar 

  85. Pilot study of curcumin for women with obesity and high risk for breast cancer - tabular view - ClinicalTrials.gov [Internet]. [cited 2020 Jul 30]. Available from: https://clinicaltrials.gov/ct2/show/record/NCT01975363

  86. Comparison of curcumin bioavailability - full text view - ClinicalTrials.gov [Internet]. [cited 2020 Jul 30]. Available from: https://clinicaltrials.gov/ct2/show/NCT03530436

  87. Evaluation of liposomal curcumin in healthy volunteers - full text view - ClinicalTrials.gov [Internet]. [cited 2020 Jul 30]. Available from: https://clinicaltrials.gov/ct2/show/NCT01403545

  88. US7968115B2 - Liposomal curcumin for treatment of cancer - Google Patents.

  89. WO2018135912A3 - Composition comprising curcumin-captured ginsenoside and phospholipid-based lipid nanoparticle as effective ingredient for preventing or treating helicobacter pylori infection - Google Patents.

  90. US10004687B2 - Liposomal curcumin for treatment of diseases - Google Patents.

  91. KR20190024397A - Curcumin nanostructured lipid carrier having the increased heat stability and the method of heat treatment for the efficient stabilization - Google Patents.

  92. KR101943211B1 - Turmeric loaded nanostructured lipid carrier and method for preparing the same - Google Patents.

  93. WO2017095138A1 - Curcumin-containing lipid nanoparticle complex comprising ginsenosides - Google Patents.

  94. WO2015195458A1 - Therapeutic nanoparticles and methods thereof - Google Patents.

  95. CN103251539B - Nanostructured lipid carrier for composite skin lightener and preparation method of composite skin lightener - Google Patents.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Singhvi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Guest Editors: Harsh Chauhan, Abhijit Date and Sonali Dhindwal

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waghule, T., Gorantla, S., Rapalli, V.K. et al. Emerging Trends in Topical Delivery of Curcumin Through Lipid Nanocarriers: Effectiveness in Skin Disorders. AAPS PharmSciTech 21, 284 (2020). https://doi.org/10.1208/s12249-020-01831-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01831-9

KEY WORDS

Navigation