Skip to main content

Advertisement

Log in

Formulation and Evaluation of Novel Hybridized Nanovesicles for Enhancing Buccal Delivery of Ciclopirox Olamine

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Ciclopirox olamine (CPO) is a topical wide-spectrum antimycotic agent that possesses antifungal, antibacterial and anti-inflammatory activities. Loading CPO into a hybridized vesicular system is expected to enhance its buccal permeation and hence, therapeutic activity, whereas the frequent administration and side effects are reduced. Vesicular systems with high penetration ability were prepared based on cholesterol, Lipoid S45 or Phospholipon 90H, with span 60 while incorporating a penetration enhancer (Labrafac or labrasol) followed by full assessment of their size, entrapment efficiency, and drug release profiles. The optimum formulation, composed of Lipoid S45 and Labrafac, possessed the smallest vesicle size (346.1 nm), highest entrapment efficiency (94.4%), and sustained CPO release pattern, and was characterized for its morphology and thermal properties. This powerful mixture of the penetration enhancers (Lipoid S45 and Labrafac) in the designed hybridized vesicles was thoroughly investigated for their characteristics after being incorporated in bioadhesive gel. Moreover, enhanced antifungal activity was demonstrated either upon testing the designed formulation on agar plates or in vivo upon treating infected rabbits with the proposed formulation. Results suggest that the presented bioadhesive gel incorporating the CPO-loaded vesicles can be a promising delivery system that can offer a prolonged localized antifungal treatment with enhanced therapeutic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Spampinato C, Leonardi D. Candida infections, causes, targets, and resistance mechanisms: traditional and alternative antifungal agents. Biomed Res Int. 2013;2013:204237.

    Google Scholar 

  2. Morales JO, McConville JT. Manufacture and characterization of mucoadhesive buccal films. Eur J Pharm Biopharm. 2011;77(2):187–99.

    CAS  Google Scholar 

  3. Tarawneh RT, Hamdan II, Bani-Jaber A, Darwish RM. Physicochemical studies on Ciclopirox olamine complexes with divalent metal ions. Int J Pharm. 2005;289(1–2):179–87.

    CAS  Google Scholar 

  4. Acton QA. Issues in pharmacology, pharmacy, drug research, and drug innovation: ScholarlyMedia LLC; 2013.

  5. Sigle H-C, Thewes S, Niewerth M, Korting HC, Schäfer-Korting M, Hube B. Oxygen accessibility and iron levels are critical factors for the antifungal action of ciclopirox against Candida albicans. J Antimicrob Chemother. 2005;55(5):663–73.

    CAS  Google Scholar 

  6. Bohn M, Kraemer KT. Dermatopharmacology of ciclopirox nail lacquer topical solution 8% in the treatment of onychomycosis. J Am Acad Dermatol. 2000;43(4):S57–69.

    CAS  Google Scholar 

  7. Subissi A, Monti D, Togni G, Mailland F. Ciclopirox: recent nonclinical and clinical data relevant to its use as a topical antimycotic agent. Drugs. 2010;70(16):2133–52.

    Google Scholar 

  8. Niewerth M, Kunze D, Seibold M, Schaller M, Korting HC, Hube B. Ciclopirox olamine treatment affects the expression pattern of Candida albicans genes encoding virulence factors, iron metabolism proteins, and drug resistance factors. Antimicrob Agents Chemother. 2003;47(6):1805–17.

    CAS  Google Scholar 

  9. Braga P, Piatti G, Conti E, Vignali F. Effects of subinhibitory concentrations of ciclopirox on the adherence of Candida albicans to human buccal and vaginal epithelial cells. Arzneimittel-forschung. 1992;42(11):1368–71.

    CAS  Google Scholar 

  10. Lukasova I, Muselik J, Vetchy D, Gajdziok J, Gajdosova M, Jurica J, et al. Pharmacokinetics of ciclopirox olamine after buccal administration in rabbits. Curr Drug Deliv. 2017;14(1):99–108.

    CAS  Google Scholar 

  11. Alenaizi R, Radiman S, Rahman IA, Mohamed F. Zwitterionic betaine transition from micelles to vesicles induced by cholesterol. J Mol Liq. 2016;223:1226–33.

    CAS  Google Scholar 

  12. Kuo A-T, Tu C-L, Yang Y-M, Chang C-H. Enhanced physical stability of positively charged catanionic vesicles: role of cholesterol-adjusted molecular packing. J Taiwan Inst Chem Eng. 2018;92:29–35.

    CAS  Google Scholar 

  13. Mohsen AM, AbouSamra MM, ElShebiney SA. Enhanced oral bioavailability and sustained delivery of glimepiride via niosomal encapsulation: in-vitro characterization and in-vivo evaluation. Drug Dev Ind Pharm. 2017;43(8):1254–64.

    CAS  Google Scholar 

  14. Zhang J, Xue R, Ong W-Y, Chen P. Roles of cholesterol in vesicle fusion and motion. Biophys J. 2009;97(5):1371–80.

    CAS  Google Scholar 

  15. Epand RM. Cholesterol and the interaction of proteins with membrane domains. Prog Lipid Res. 2006;45(4):279–94.

    CAS  Google Scholar 

  16. Sebaaly C, Greige-Gerges H, Stainmesse S, Fessi H, Charcosset C. Effect of composition, hydrogenation of phospholipids and lyophilization on the characteristics of eugenol-loaded liposomes prepared by ethanol injection method. Food Biosci. 2016;15:1–10.

    CAS  Google Scholar 

  17. AbouSamra MM, Salama AH. Enhancement of the topical tolnaftate delivery for the treatment of tinea pedis via provesicular gel systems. J Liposome Res. 2017;27(4):324–34.

    CAS  Google Scholar 

  18. Southwell D, Barry BW. Penetration enhancers for human skin: mode of action of 2-pyrrolidone and dimethylformamide on partition and diffusion of model compounds water, n-alcohols, and caffeine. J Invest Dermatol. 1983;80(6):507–14.

    CAS  Google Scholar 

  19. McCartney F, Jannin V, Chevrier S, Boulghobra H, Hristov DR, Ritter N, et al. Labrasol® is an efficacious intestinal permeation enhancer across rat intestine: ex vivo and in vivo rat studies. J Control Release. 2019;310:115–26.

    CAS  Google Scholar 

  20. Fares NV, Abd-Allah H, Sobieh AE, Atta H, Ramekh N, Khaled H, et al. A potential breast cancer dual therapy using phytochemicals-loaded nanoscale penetration enhancing vesicles: a double impact weapon in the arsenal. J Drug Delivery Sci Technol. 2020; 57:101663.

  21. Mosley GL, Yamanishi CD, Kamei DT. Mathematical modeling of vesicle drug delivery systems 1: vesicle formation and stability along with drug loading and release. J Lab Autom. 2013;18(1):34–45.

    CAS  Google Scholar 

  22. Gomez-Orellana I. Strategies to improve oral drug bioavailability. Expert Opin Drug Deliv. 2005;2(3):419–33.

    CAS  Google Scholar 

  23. Matloub AA, Salama AH, Aglan HA, AbouSamra MM, ElSouda SSM, Ahmed HH. Exploiting bilosomes for delivering bioactive polysaccharide isolated from Enteromorpha intestinalis for hacking hepatocellular carcinoma. Drug Dev Ind Pharm. 2018;44(4):523–34.

    CAS  Google Scholar 

  24. Salama AH, Aburahma MH. Ufasomes nano-vesicles-based lyophilized platforms for intranasal delivery of cinnarizine: preparation, optimization, ex-vivo histopathological safety assessment and mucosal confocal imaging. Pharm Dev Technol. 2016;21(6):706–15.

    CAS  Google Scholar 

  25. Salama AH, Elmotasem H, Salama AA. Nanotechnology based blended chitosan-pectin hybrid for safe and efficient consolidative antiemetic and neuro-protective effect of meclizine hydrochloride in chemotherapy induced emesis. Int J Pharm. 2020; 584:119411.

  26. Ammar H, Ghorab M, Kamel R, Salama AH. A trial for the design and optimization of pH-sensitive microparticles for intestinal delivery of cinnarizine. Drug Deliv Transl Res. 2016;6(3):195–209.

    CAS  Google Scholar 

  27. Matloub AA, AbouSamra MM, Salama AH, Rizk MZ, Aly HF, Fouad GI. Cubic liquid crystalline nanoparticles containing a polysaccharide from Ulva fasciata with potent antihyperlipidaemic activity. Saudi Pharm J. 2018;26(2):224–31.

    Google Scholar 

  28. Zhao L, Wang Y, Zhai Y, Wang Z, Liu J, Zhai G. Ropivacaine loaded microemulsion and microemulsion-based gel for transdermal delivery: preparation, optimization, and evaluation. Int J Pharm. 2014;477(1–2):47–56.

    CAS  Google Scholar 

  29. Amin KM, El-Masry AH, Mohamed NA, Awad GEA, Habib BS. Synthesis, characterization and antimicrobial activity of some novel isoindole-1,3-dione derivatives. Pharm Chem. 2013;5(5):97–108.

    CAS  Google Scholar 

  30. Rencber S, Karavana SY, Yilmaz FF, Erac B, Nenni M, Ozbal S, et al. Development, characterization, and in vivo assessment of mucoadhesive nanoparticles containing fluconazole for the local treatment of oral candidiasis. Int J Nanomedicine. 2016;11:2641–53.

    CAS  Google Scholar 

  31. Kiernan JA. Histological and histochemical methods: theory and practice. Shock. 1999;12(6):479.

  32. Ya’akob HB, Chin CS, Aziz AA, Ware I, Jalil MFA, Ahmed NR, et al. Effect of Span 60, Labrasol, and cholesterol on Labisia pumila loaded niosomes quality. Int J Biotechnol Bioeng. 2017;11(7):521–4.

    Google Scholar 

  33. Helmy HS, El-Sahar AE, Sayed RH, Shamma RN, Salama AH, Elbaz EM. Therapeutic effects of lornoxicam-loaded nanomicellar formula in experimental models of rheumatoid arthritis. Int J Nanomedicine. 2017;12:7015–23.

    CAS  Google Scholar 

  34. Salama AH, Abdelkhalek AA, Elkasabgy NA. Etoricoxib-loaded bio-adhesive hybridized polylactic acid-based nanoparticles as an intra-articular injection for the treatment of osteoarthritis. Int J Pharm. 2020;578:119081.

    CAS  Google Scholar 

  35. FDA U. Liposome Drug Products; Chemistry, Manufacturing, and Controls; Human Pharmacokinetics and Bioavailability; Labeling Documentation. Guidance for Industry; April 2018 Pharmaceutical Quality/CMC.; U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER): Silver Spring. 2018.

  36. Masarudin MJ, Cutts SM, Evison BJ, Phillips DR, Pigram PJ. Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [14C]-doxorubicin. Nanotechnol Sci Appl. 2015;8:67–80.

    CAS  Google Scholar 

  37. Bhattacharya S, Haldar S. The effects of cholesterol inclusion on the vesicular membranes of cationic lipids. Biochim Biophys Acta Biomembr. 1996;1283(1):21–30.

    Google Scholar 

  38. Bhattacharya S, Haldar S. Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain–backbone linkage. Biochim Biophys Acta Biomembr. 2000;1467(1):39–53.

    CAS  Google Scholar 

  39. Kuo A-T, Chang C-H. Cholesterol-induced condensing and disordering effects on a rigid catanionic bilayer: a molecular dynamics study. Langmuir. 2014;30(1):55–62.

    CAS  Google Scholar 

  40. Pankaj S, Rini T, Dandagi P. Formulation and evaluation of proniosome based drug delivery system of the antifungal drug clotrimazole. Int J Pharm Sci Nanotech. 2013;6:1945–51.

    Google Scholar 

  41. Haider M, Kanoujia J, Tripathi CB, Arya M, Kaithwas G, Saraf SA. Pioglitazone loaded vesicular carriers for anti-diabetic activity: development and optimization as per central composite design. J Pharm Sci Pharmacol. 2015;2(1):11–20.

    Google Scholar 

  42. Saravanakumar G, Min KH, Min DS, Kim AY, Lee CM, Cho YW, et al. Hydrotropic oligomer-conjugated glycol chitosan as a carrier of paclitaxel: synthesis, characterization, and in vivo biodistribution. J Control Release. 2009;140(3):210–217.

  43. Salama AH, Basha M, El Awdan S. Experimentally designed lyophilized dry emulsion tablets for enhancing the antihyperlipidemic activity of atorvastatin calcium: preparation, in-vitro evaluation and in-vivo assessment. Eur J Pharm Sci. 2018;112:52–62.

    CAS  Google Scholar 

  44. Singh G, Pai RS, Devi VK. Optimization of pellets containing solid dispersion prepared by extrusion/spheronization using central composite design and desirability function. J Young Pharm. 2012;4(3):146–56.

    Google Scholar 

  45. Ammar HO, Ghorab M, Kamel R, Salama AH. Design and optimization of gastro-retentive microballoons for enhanced bioavailability of cinnarizine. Drug Deliv Transl Res. 2016;6(3):210–24.

    CAS  Google Scholar 

  46. Kirjavainen M, Monkkonen J, Saukkosaari M, Valjakka-Koskela R, Kiesvaara J, Urtti A. Phospholipids affect stratum corneum lipid bilayer fluidity and drug partitioning into the bilayers. J Control Release. 1999;58(2):207–14.

  47. Şenyiğit T, Sonvico F, Barbieri S, Özer Ö, Santi P, Colombo P. Lecithin/chitosan nanoparticles of clobetasol-17-propionate capable of accumulation in pig skin. J Control Release. 2010;142(3):368–73.

    Google Scholar 

  48. Ganguly K, Chaturvedi K, More UA, Nadagouda MN, Aminabhavi TM. Polysaccharide-based micro/nanohydrogels for delivering macromolecular therapeutics. J Control Release. 2014;193:162–73.

    CAS  Google Scholar 

  49. Hafner A, Lovric J, Voinovich D, Filipovic-Grcic J. Melatonin-loaded lecithin/chitosan nanoparticles: physicochemical characterisation and permeability through Caco-2 cell monolayers. Int J Pharm. 2009;381(2):205–13.

    CAS  Google Scholar 

  50. Bos JD. Non-steroidal topical immunomodulators provide skin-selective, self-limiting treatment in atopic dermatitis. Eur J Dermatol : EJD. 2003;13(5):455–61.

    CAS  Google Scholar 

  51. Senyigit T, Sonvico F, Barbieri S, Ozer O, Santi P, Colombo P. Lecithin/chitosan nanoparticles of clobetasol-17-propionate capable of accumulation in pig skin. J Control Release. 2010;142(3):368–73.

  52. Wang S, Sun M, Ping Q. Enhancing effect of Labrafac Lipophile WL 1349 on oral bioavailability of hydroxysafflor yellow A in rats. Int J Pharm. 2008;358(1–2):198–204.

    CAS  Google Scholar 

  53. Sudhakar Y, Kuotsu K, Bandyopadhyay AK. Buccal bioadhesive drug delivery—a promising option for orally less efficient drugs. J Control Release. 2006;114(1):15–40.

  54. Chawla V, Saraf SA. Rheological studies on solid lipid nanoparticle based carbopol gels of aceclofenac. Colloids Surf B: Biointerfaces. 2012;92:293–8.

    CAS  Google Scholar 

  55. Carnali J, Naser M. The use of dilute solution viscometry to characterize the network properties of carbopol microgels. Colloid Polym Sci. 1992;270(2):183–93.

    CAS  Google Scholar 

  56. Das B, Nayak AK, Nanda U. Topical gels of lidocaine HCl using cashew gum and Carbopol 940: preparation and in vitro skin permeation. Int J Biol Macromol. 2013;62:514–7.

    CAS  Google Scholar 

  57. Harish N, Prabhu P, Charyulu R, Gulzar M, Subrahmanyam E. Formulation and evaluation of in situ gels containing clotrimazole for oral candidiasis. Indian J Pharm Sci. 2009;71(4):421–7.

    CAS  Google Scholar 

  58. Aslani A, Ghannadi A, Najafi H. Design, formulation and evaluation of a mucoadhesive gel from Quercus brantii L. and Coriandrum sativum L. as periodontal drug delivery. Advanced biomedical research. 2013;2:21.

    Google Scholar 

  59. Baliga S, Muglikar S, Kale R. Salivary pH: a diagnostic biomarker. J Indian Soc Periodontol. 2013;17(4):461–5.

    Google Scholar 

Download references

Funding

This study received financial support from the National Research Centre through a grant (No: 11010301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa H. Salama.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AbouSamra, M.M., Salama, A.H., Awad, G.E.A. et al. Formulation and Evaluation of Novel Hybridized Nanovesicles for Enhancing Buccal Delivery of Ciclopirox Olamine. AAPS PharmSciTech 21, 283 (2020). https://doi.org/10.1208/s12249-020-01823-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01823-9

KEY WORDS

Navigation