Skip to main content
Log in

Thermally Conductive Excipient Expands KinetiSol® Processing Capabilities

  • Research Article
  • Theme: Pharmaceutical Thermal Processing - An Update
  • Published:
  • volume 21, Article number: 319 (2020)
AAPS PharmSciTech Aims and scope Submit manuscript

Cite this article

Abstract

We report for the first time that incorporation of a thermally conductive excipient (TCE) modifies the thermal conductivity of the ternary drug-polymer-TCE compositions such that high-energy mixing can occur for prolonged periods at a selected steady-state temperature during the KinetiSol process. In this study, candurin, a TCE, is incorporated within a composition that is processed by high-energy mixing from the KinetiSol process to increase the thermal conductivity of the ternary composition. The improved thermal conductivity promotes heat transfer and enables the high-energy mixing applied during the KinetiSol process to be continued for prolonged time intervals at a selected steady-state temperature, instead of undergoing a continued increase in temperature when the TCE is not present in the composition. The addition of candurin does not impact the molecular structure and mixing of the drug and polymer in ASDs from solid-state NMR characterizations. Compositions with candurin achieved a steady-state processing temperature with + 5°C of the target temperature, and these compositions demonstrated the ability to mix for prolonged time periods while maintaining within this steady-state temperature range, thus enabling the formation of an ASD at a temperature that the drug does not chemically degrade. This study demonstrated that inclusion of the TCE modified the composition’s thermal conductivity to efficiently dissipate heat to achieve a selected steady-state temperature during the KinetiSol process, thus providing prolonged mixing times at a lower temperature for dissolving the drug into the polymer to achieve an ASD without sacrificing product performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Ku MS, Dulin W. A biopharmaceutical classification-based right-first-time formulation approach to reduce human pharmacokinetic variability and project cycle time from first-in-human to clinical proof-of-concept. Pharm Dev Technol. 2012;17(3):285–302.

    Article  CAS  PubMed  Google Scholar 

  2. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol. 2010;62(11):1607–21.

    Article  CAS  PubMed  Google Scholar 

  3. Jermain SV, Brough C, Williams RO III. Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery–an update. Int J Pharm. 2018;535(1–2):379–92.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang M, Li H, Lang B, O’Donnell K, Zhang H, Wang Z, et al. Formulation and delivery of improved amorphous fenofibrate solid dispersions prepared by thin film freezing. Eur J Pharm Biopharm. 2012;82(3):534–44.

    Article  CAS  PubMed  Google Scholar 

  5. Shah N, Iyer RM, Mair H-J, Choi D, Tian H, Diodone R, et al. Improved human bioavailability of vemurafenib, a practically insoluble drug, using an amorphous polymer-stabilized solid dispersion prepared by a solvent-controlled coprecipitation process. J Pharm Sci. 2013;102(3):967–81.

    Article  CAS  PubMed  Google Scholar 

  6. Hughey JR, Keen JM, Brough C, Saeger S, McGinity JW. Thermal processing of a poorly water-soluble drug substance exhibiting a high melting point: the utility of KinetiSol® dispersing. Int J Pharm. 2011;419(1–2):222–30.

    Article  CAS  PubMed  Google Scholar 

  7. Miller DA, Keen JM, Brough C, Kucera SU, Ellenberger DJ. Improved formulations of vemurafenib and methods of making the same. Google Patents; 2017.

  8. Miller DA, Keen JM, Brough C, Ellenberger DJ, Cisneros M, Williams RO III, et al. Bioavailability enhancement of a BCS IV compound via an amorphous combination product containing ritonavir. J Pharm Pharmacol. 2016;68(5):678–91.

    Article  CAS  PubMed  Google Scholar 

  9. Hughey JR, DiNunzio JC, Bennett RC, Brough C, Miller DA, Ma H, et al. Dissolution enhancement of a drug exhibiting thermal and acidic decomposition characteristics by fusion processing: a comparative study of hot melt extrusion and KinetiSol® dispersing. AAPS PharmSciTech. 2010;11(2):760–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Miller DA, Keen JM. Kucera SU. Google Patents: Formulations of deferasirox and methods of making the same; 2019.

    Google Scholar 

  11. Bergström CA, Charman WN, Porter CJ. Computational prediction of formulation strategies for beyond-rule-of-5 compounds. Adv Drug Deliv Rev. 2016;101:6–21.

    Article  PubMed  CAS  Google Scholar 

  12. Leeson PD. Molecular inflation, attrition and the rule of five. Adv Drug Deliv Rev. 2016;101:22–33.

    Article  CAS  PubMed  Google Scholar 

  13. Miller DA, Ellenberger DJ, Gil M. Spray-drying. In: Williams III RO, Watts AB, Miller DA, editors. Formulating poorly water soluble drugs. 22: Springer; 2016.

  14. Repka MA, Gerding TG, Repka SL, McGinity JW. Influence of plasticizers and drugs on the physical-mechanical properties of hydroxypropylcellulose films prepared by hot melt extrusion. Drug Dev Ind Pharm. 1999;25(5):625–33.

    Article  CAS  PubMed  Google Scholar 

  15. LaFountaine JS, McGinity JW, Williams RO. Challenges and strategies in thermal processing of amorphous solid dispersions: a review. AAPS PharmSciTech. 2016;17(1):43–55.

    Article  CAS  PubMed  Google Scholar 

  16. Keen JM, McGinity JW, Williams RO III. Enhancing bioavailability through thermal processing. Int J Pharm. 2013;450(1–2):185–96.

    Article  CAS  PubMed  Google Scholar 

  17. Gupta SS, Meena A, Parikh T, Serajuddin AT. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion-I: polyvinylpyrrolidone and related polymers. J Excip Food Chem. 2016;5(1):1001.

    Google Scholar 

  18. Meena A, Parikh T, Gupta SS, Serajuddin AT. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion-II: cellulosic polymers. J Excip Food Chem. 2016;5(1):1002.

    Google Scholar 

  19. Parikh T, Gupta SS, Meena A, Serajuddin AT. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion-III: polymethacrylates and polymethacrylic acid based polymers. J Excip Food Chem. 2016;5(1):1003.

    Google Scholar 

  20. Gupta SS, Solanki N, Serajuddin AT. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion, IV: Affinisol™ HPMC HME polymers. AAPS PharmSciTech. 2016;17(1):148–57.

    Article  CAS  PubMed  Google Scholar 

  21. Thakkar R, Thakkar R, Pillai A, Ashour EA, Repka MA. Systematic screening of pharmaceutical polymers for hot melt extrusion processing: a comprehensive review. Int J Pharm. 2020;576:118989.

    Article  CAS  PubMed  Google Scholar 

  22. Miller DA, Keen JM. KinetiSol®-based amorphous solid dispersions. Amorphous Solid Dispersions: Springer; 2014. p. 567–77.

    Book  Google Scholar 

  23. Jermain SV, Miller D, Spangenberg A, Lu X, Moon C, Su Y, et al. Homogeneity of amorphous solid dispersions–an example with KinetiSol®. Drug Dev Ind Pharm. 2019;45(5):724–35.

    Article  CAS  PubMed  Google Scholar 

  24. Alexy P, Lacı́k I, Šimková B, Bakoš D, Prónayová Na, Liptaj T, et al. Effect of melt processing on thermo-mechanical degradation of poly (vinyl alcohol) s. Polym Degrad Stab 2004;85(2):823–830.

  25. Brough C, Miller DA, Keen JM, Kucera SA, Lubda D, Williams RO. Use of polyvinyl alcohol as a solubility-enhancing polymer for poorly water soluble drug delivery (part 1). AAPS PharmSciTech. 2016;17(1):167–79.

    Article  CAS  PubMed  Google Scholar 

  26. Brough C, Miller DA, Ellenberger D, Lubda D, Williams RO. Use of polyvinyl alcohol as a solubility enhancing polymer for poorly water-soluble drug delivery (part 2). AAPS PharmSciTech. 2016;17(1):180–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. LaFountaine JS, Jermain SV, Prasad LK, Brough C, Miller DA, Lubda D, et al. Enabling thermal processing of ritonavir–polyvinyl alcohol amorphous solid dispersions by KinetiSol® dispersing. Eur J Pharm Biopharm. 2016;101:72–81.

    Article  CAS  PubMed  Google Scholar 

  28. DiNunzio JC, Brough C, Miller DA, Williams RO III, McGinity JW. Applications of KinetiSol® dispersing for the production of plasticizer free amorphous solid dispersions. Eur J Pharm Sci. 2010;40(3):179–87.

    Article  CAS  PubMed  Google Scholar 

  29. Ellenberger DJ, Miller DA, Williams RO. Expanding the application and formulation space of amorphous solid dispersions with KinetiSol®: a review. AAPS PharmSciTech. 2018;19(5):1933–56.

    Article  CAS  PubMed  Google Scholar 

  30. Hengsawas Surasarang S, Keen JM, Huang S, Zhang F, McGinity JW, Williams RO III. Hot melt extrusion versus spray drying: hot melt extrusion degrades albendazole. Drug Dev Ind Pharm. 2017;43(5):797–811.

    Article  CAS  PubMed  Google Scholar 

  31. Yang Y. Thermal conductivity. In: Mark JE, editor. Physical properties of polymers handbook. 1076: Springer; 2007.

  32. Folmer D, Rao M. Potassium aluminium silicate-based pearlescent pigments, types I. Chemical and Technical Assessment (CTA): II and III; 2013.

    Google Scholar 

  33. Evaluation of certain food additives and contaminants.

  34. Fina F, Goyanes A, Gaisford S, Basit AW. Selective laser sintering (SLS) 3D printing of medicines. Int J Pharm. 2017;529(1–2):285–93.

    Article  CAS  PubMed  Google Scholar 

  35. Fina F, Madla CM, Goyanes A, Zhang J, Gaisford S, Basit AW. Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Int J Pharm. 2018;541(1–2):101–7.

    Article  CAS  PubMed  Google Scholar 

  36. Ashland. AquaSolveTM hydroxypropylmethycellulose acetate succinate: physical and chemical properties handbook. 2016.

  37. Sarode AL, Sandhu H, Shah N, Malick W, Zia H. Hot melt extrusion (HME) for amorphous solid dispersions: predictive tools for processing and impact of drug–polymer interactions on supersaturation. Eur J Pharm Sci. 2013;48(3):371–84.

    Article  CAS  PubMed  Google Scholar 

  38. Sarabu S, Kallakunta VR, Bandari S, Batra A, Bi V, Durig T, et al. Hypromellose acetate succinate based amorphous solid dispersions via hot melt extrusion: effect of drug physicochemical properties. Carbohydr Polym. 2020;115828.

  39. Jermain SV, Lowinger MB, Ellenberger DJ, Miller D, Su Y, Williams III R.O. In vitro and In vivo behavior of KinetiSol and spray dried amorphous solid dipsersion of a weakly basic drug and ionic polymer. Molecular Pharmaceutics. 2020 in press.

  40. Paudel A, Geppi M, Van den Mooter G. Structural and dynamic properties of amorphous solid dispersions: the role of solid-state nuclear magnetic resonance spectroscopy and relaxometry. J Pharm Sci. 2014;103(9):2635–62.

    Article  CAS  PubMed  Google Scholar 

  41. Brettmann BK, Myerson AS, Trout BL. Solid-state nuclear magnetic resonance study of the physical stability of electrospun drug and polymer solid solutions. J Pharm Sci. 2012;101(6):2185–93.

    Article  CAS  PubMed  Google Scholar 

  42. Sarode AL, Obara S, Tanno FK, Sandhu H, Iyer R, Shah N. Stability assessment of hypromellose acetate succinate (HPMCAS) NF for application in hot melt extrusion (HME). Carbohydr Polym. 2014;101:146–53.

    Article  CAS  PubMed  Google Scholar 

  43. DiNunzio JC, Brough C, Hughey JR, Miller DA, Williams RO III, McGinity JW. Fusion production of solid dispersions containing a heat-sensitive active ingredient by hot melt extrusion and Kinetisol® dispersing. Eur J Pharm Biopharm. 2010;74(2):340–51.

    Article  CAS  PubMed  Google Scholar 

  44. Ellenberger DJ, Miller DA, Kucera SU, Williams RO. Generation of a weakly acidic amorphous solid dispersion of the weak base ritonavir with equivalent in vitro and in vivo performance to Norvir tablet. AAPS PharmSciTech. 2018;19(5):1985–97.

    Article  CAS  PubMed  Google Scholar 

  45. Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo W, Nightingale J. Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm. 2008;5(6):1003–19.

    Article  CAS  PubMed  Google Scholar 

  46. Geppi M, Mollica G, Borsacchi S, Veracini CA. Solid-state NMR studies of pharmaceutical systems. Appl Spectrosc Rev. 2008;43(3):202–302.

    Article  CAS  Google Scholar 

  47. Vogt FG, Clawson JS, Strohmeier M, Pham TN, Watson SA, Edwards AJ. New approaches to the characterization of drug candidates by solid-state NMR. Pharmaceutical Sciences Encyclopedia: Drug Discovery, Development, and Manufacturing. 2010:1–77.

  48. Hanada M, Jermain SV, Lu X, Su Y, Williams RO III. Predicting physical stability of ternary amorphous solid dispersions using specific mechanical energy in a hot melt extrusion process. Int J Pharm. 2018;548(1):571–85.

    Article  CAS  PubMed  Google Scholar 

  49. Yuan X, Xiang T-X, Anderson BD, Munson EJ. Hydrogen bonding interactions in amorphous indomethacin and its amorphous solid dispersions with poly (vinylpyrrolidone) and poly (vinylpyrrolidone-co-vinyl acetate) studied using 13C solid-state NMR. Mol Pharm. 2015;12(12):4518–28.

    Article  CAS  PubMed  Google Scholar 

  50. Flory PJ. Principles of polymer chemistry: Cornell University press; 1953.

    Google Scholar 

  51. Marsac PJ, Shamblin SL, Taylor LS. Theoretical and practical approaches for prediction of drug–polymer miscibility and solubility. Pharm Res. 2006;23(10):2417–26.

    Article  CAS  PubMed  Google Scholar 

  52. Meng F, Trivino A, Prasad D, Chauhan H. Investigation and correlation of drug polymer miscibility and molecular interactions by various approaches for the preparation of amorphous solid dispersions. Eur J Pharm Sci. 2015;71:12–24.

    Article  CAS  PubMed  Google Scholar 

  53. Liu X, Lu M, Guo Z, Huang L, Feng X, Wu C. Improving the chemical stability of amorphous solid dispersion with cocrystal technique by hot melt extrusion. Pharm Res. 2012;29(3):806–17.

    Article  CAS  PubMed  Google Scholar 

  54. Baird JA, Taylor LS. Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Adv Drug Deliv Rev. 2012;64(5):396–421.

    Article  CAS  PubMed  Google Scholar 

  55. Raman C, Xiang B, Murugaiah A. Thermally conductive plastic compositions, extrusion apparatus and methods for making thermally conductive plastics. Google Patents; 2016.

    Google Scholar 

  56. Touloukian YS, Powell RW, Ho CY, Klemens PG. Thermophysical properties of matter- the TPRC Data Series—Vol. 1. Thermal conductivity-metallic elements and alloys 1970. 1595 p.

  57. Xu Y, Chung D, Mroz C. Thermally conducting aluminum nitride polymer-matrix composites. Compos A: Appl Sci Manuf. 2001;32(12):1749–57.

    Article  Google Scholar 

  58. Li M, Wan Y, Gao Z, Xiong G, Wang X, Wan C, et al. Preparation and properties of polyamide 6 thermal conductive composites reinforced with fibers. Mater Des. 2013;51:257–61.

    Article  CAS  Google Scholar 

  59. Rauwendaal C. New dispersive mixers based on elongational flow. Plastics Additives and Compounding. 1999;1:21–3.

    Article  CAS  Google Scholar 

  60. Jia S, Qu J, Zhai S, Huang Z, Wu C, Chen R, et al. Effects of dynamic elongational flow on the dispersion and mechanical properties of low-density polyethylene/nanoprecipitated calcium carbonate composites. Polym Compos. 2014;35(5):884–91.

    Article  CAS  Google Scholar 

  61. Grace HP. Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem Eng Commun. 1982;14(3–6):225–77.

    Article  CAS  Google Scholar 

  62. Nomura T, Tabuchi K, Zhu C, Sheng N, Wang S, Akiyama T. High thermal conductivity phase change composite with percolating carbon fiber network. Appl Energy. 2015;154:678–85.

    Article  CAS  Google Scholar 

  63. Huang D, Xie Z, Rao Q, Liamas E, Pan P, Guan S, et al. Hot melt extrusion of heat-sensitive and high melting point drug: inhibit the recrystallization of the prepared amorphous drug during extrusion to improve the bioavailability. Int J Pharm. 2019;565:316–24.

    Article  CAS  PubMed  Google Scholar 

  64. Hold P. Mixing of polymers—an overview part I. Adv Polym Technol. 1982;2(2):141–51.

    Article  CAS  Google Scholar 

  65. Fick A. V. On liquid diffusion. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1855;10(63):30–39.

  66. Shenoy AV. Preparation of filled polymer systems. Rheology of Filled Polymer Systems: Springer; 1999. p. 175–242.

    Book  Google Scholar 

  67. Brough C, McGinity JW, Miller DA, Di Nunzio J, Williams RO. Thermo-kinetic mixing for pharmaceutical applications. Google Patents; 2013.

  68. Gala U, Miller D, Williams RO. Improved dissolution and pharmacokinetics of abiraterone through KinetiSol® enabled amorphous solid dispersions. Pharmaceutics. 2020;12(4):357.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Boehringer Ingelheim and the team at opnMe for making available BI 639667 in sufficient quantity to adequately formulate and characterize. The authors would like to thank the following individuals at DisperSol Technologies, LLC, for their assistance in facilitating operation of various apparatuses and troubleshooting: Devon Macdonald.

Graduate research assistant funding for Daniel A. Davis Jr. was provided by DisperSol Technologies, LLC. Davis and Williams are co-inventors on related intellectual property.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert O. Williams III.

Additional information

Guest Editors: Feng Zhang, Michael Repka and Suresh Bandari

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, D.A., Miller, D.A., Su, Y. et al. Thermally Conductive Excipient Expands KinetiSol® Processing Capabilities. AAPS PharmSciTech 21, 319 (2020). https://doi.org/10.1208/s12249-020-01817-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01817-7

Keywords

Navigation