Skip to main content

Advertisement

Log in

Production of Lysozyme-PLGA-Loaded Microparticles for Controlled Release Using Hot-Melt Extrusion

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Biopharmaceuticals are usually administered intravenously with frequent dosing regimens which may decrease patient compliance. Controlled-release formulations allow to reduce the frequency of injections while providing a constant dosing of the biopharmaceutical over extended periods. These formulations are typically produced by emulsions, requiring high amounts of organic solvents and have limited productivity. Hot-melt extrusion (HME) is an alternative technology to produce controlled drug delivery systems. It is a continuous solvent-free process, leading to a small ecological footprint and higher productivity. However, it may induce thermolabile compounds’ degradation. In this work, the impact of the formulation and extrusion temperature on lysozyme’s bioactivity and release profile of poly(lactic-co-glycolic acid) (PLGA)-based extended release formulations were evaluated using a design-of-experiments (DoE) approach. The lysozyme-loaded PLGA microparticles were produced by HME followed by milling. It was observed that the in vitro release (IVR) profile was mainly affected by the drug load; higher drug load led to higher burst and total lysozyme release after 14 days. HME temperature seemed to decrease lysozyme’s activity although this correlation was not statistically significant (p value = 0.0490). Adding polyethylene glycol 400 (PEG 400) as a plasticizer to the formulation had no significant impact on the lysozyme release profile. The burst release was effectively mitigated with the inclusion of a washing step. Washing the microparticles with water reduced the burst release by 80% whereas washing them with a poly(vinyl alcohol) (PVA) aqueous solution eliminated it. In conclusion, HME is demonstrated to be suitable in producing controlled-release microparticles of small biopharmaceuticals.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Maltesen MJ, van de Weert M. Drying methods for protein pharmaceuticals. Drug Discov Today Technol. 2008;5:81–8. https://doi.org/10.1016/j.ddtec.2008.11.001.

    Article  Google Scholar 

  2. Carter PJ. Introduction to current and future protein therapeutics: a protein engineering perspective. Exp Cell Res. 2011;317:1261–9. https://doi.org/10.1016/j.yexcr.2011.02.013.

    Article  CAS  Google Scholar 

  3. Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008;7:21–39. https://doi.org/10.1038/nrd2399.

    Article  CAS  Google Scholar 

  4. Biopharmaceuticals Market - Growth, Trends, and Forecast (2019-2024). Mordor Intelligence. 2019. https://www.mordorintelligence.com/industry-reports/global-biopharmaceuticals-market-industry. Accessed 2020 Apr 8.

  5. Muheem A, Shakeel F, Jahangir MA, Anwar M, Mallick N, Jain GK, et al. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm J. 2016;24:413–28. https://doi.org/10.1016/j.jsps.2014.06.004.

    Article  Google Scholar 

  6. Škalko-Basnet N. Biologics: the role of delivery systems in improved therapy. Biol Targets Ther. 2014;8:107–14. https://doi.org/10.2147/BTT.S38387.

    Article  CAS  Google Scholar 

  7. Ma G. Microencapsulation of protein drugs for drug delivery: strategy, preparation, and applications. J Control Release. 2014;193:324–40. https://doi.org/10.1016/j.jconrel.2014.09.003.

    Article  CAS  Google Scholar 

  8. Zheng C, Liang W. A one-step modified method to reduce the burst initial release from PLGA microspheres. Drug Deliv. 2010;17:77–82. https://doi.org/10.3109/10717540903509001.

    Article  CAS  Google Scholar 

  9. Huynh CT, Lee DS. Controlled release. In: Encyclopedia of polymeric nanomaterials. Berlin: Springer; 2014. p. 1–12. https://doi.org/10.1007/978-3-642-29648-2_314.

    Chapter  Google Scholar 

  10. Mishra M. In: Mishra M, editor. Handbook of encapsulation and controlled release. Boca Raton: CRC Press; 2015. p. 1516. https://doi.org/10.1201/b19038.

    Chapter  Google Scholar 

  11. Tran PHL, Tran TTD, Park JB, Lee BJ. Controlled release systems containing solid dispersions: strategies and mechanisms. Pharm Res. 2011;28:2353–78. https://doi.org/10.1007/s11095-011-0449-y.

    Article  CAS  Google Scholar 

  12. Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release. 2001;73:121–36. https://doi.org/10.1016/S0168-3659(01)00248-6.

    Article  CAS  Google Scholar 

  13. Rodrigues de Azevedo C, von Stosch M, Costa MS, Ramos AM, Cardoso MM, Danhier F, et al. Modeling of the burst release from PLGA micro- and nanoparticles as function of physicochemical parameters and formulation characteristics. Int J Pharm. 2017;532:229–40. https://doi.org/10.1016/j.ijpharm.2017.08.118.

    Article  CAS  Google Scholar 

  14. Lee AP, Lee LJ. In: Ferrari M, Lee AP, Lee LJ, editors. BioMEMS and biomedical nanotechnology, vol. I. Boston: Springer US; 2006. https://doi.org/10.1007/b136237.

    Chapter  Google Scholar 

  15. Manjanna KM, Kumar P. Microencapsulation: an acclaimed novel drug-delivery system for NSAIDs in arthritis. Crit Rev Ther Drug Carrier Syst. 2010;27:501–32. https://doi.org/10.1615/critrevtherdrugcarriersyst.v27.i6.20.

    Article  Google Scholar 

  16. Sandeep N, John DL. Parenteral medications. 4th ed. Boca Raton: CRC Press; 2019. https://doi.org/10.1201/9780429201400.

    Book  Google Scholar 

  17. Sinha M. Use of biodegradable micro and nano-particles in vaccine delivery. Int J Biomed Res. 2011;2:102–9.

    Article  CAS  Google Scholar 

  18. Ghalanbor Z, Körber M, Bodmeier R. Improved lysozyme stability and release properties of poly(lactide-co-glycolide) implants prepared by hot-melt extrusion. Pharm Res. 2009;27:371–9. https://doi.org/10.1007/s11095-009-0033-x.

    Article  CAS  Google Scholar 

  19. Makadia H, Siegel S. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 2011;3:1–19. https://doi.org/10.3390/polym3031377.Poly.

    Article  Google Scholar 

  20. Naves L, Dhand C, Almeida L, Rajamani L, Ramakrishna S, Soares G. Poly(lactic-co-glycolic) acid drug delivery systems through transdermal pathway: an overview. Prog Biomater. 2017;6:1–11. https://doi.org/10.1007/s40204-017-0063-0.

    Article  CAS  Google Scholar 

  21. Cossé A, König C, Lamprecht A, Wagner KG. Hot melt extrusion for sustained protein release: matrix erosion and in vitro release of PLGA-based implants. AAPS PharmSciTech. 2017;18:15–26. https://doi.org/10.1208/s12249-016-0548-5.

    Article  CAS  Google Scholar 

  22. Repka MA, Majumdar S, Kumar Battu S, Srirangam R, Upadhye SB. Applications of hot-melt extrusion for drug delivery. Expert Opin Drug Deliv. 2008;5:1357–76. https://doi.org/10.1517/17425240802583421.

    Article  CAS  Google Scholar 

  23. Teodosic J. Development of biodegradable implants. PhD thesis, Free University of Berlin, Germany; 2015.

  24. Douroumis D. In: Douroumis D, editor. Hot-melt extrusion: pharmaceutical applications. Chichester: John Wiley & Sons, Ltd; 2012. https://doi.org/10.1002/9780470711415.

    Chapter  Google Scholar 

  25. Crowley MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Kumar Battu S, et al. Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev Ind Pharm. 2008;33:909–26. https://doi.org/10.1080/03639040701498759.

    Article  CAS  Google Scholar 

  26. Thiry J, Krier F, Evrard B. A review of pharmaceutical extrusion: critical process parameters and scaling-up. Int J Pharm. 2015;479:227–40. https://doi.org/10.1016/j.ijpharm.2014.12.036.

    Article  CAS  Google Scholar 

  27. Patel A, Sahu D, Dashora A, Garg R, Agraval P, Patel PP, et al. A review of hot melt extrusion technique. Int J Innov Res Sci Eng Technol. 2013;2:2194–8.

    Google Scholar 

  28. Nafissi-Varcheh N, Luginbuehl V, Aboofazeli R, Merkle HP. Preparing poly (lactic-co-glycolic acid) (PLGA) microspheres containing lysozyme-zinc precipitate using a modified double emulsion method. Iran J Pharm Res. 2011;10:203–9.

    CAS  Google Scholar 

  29. Karl M, Djuric D, Kolter K. Pharmaceutical excipients for hot-melt extrusion. Pharm Technol Ed. 2011;35:74–82.

    CAS  Google Scholar 

  30. Gao N, Guo M, Fu Q, He Z. Application of hot melt extrusion to enhance the dissolution and oral bioavailability of oleanolic acid. Asian J Pharm Sci. 2017;12:66–72. https://doi.org/10.1016/j.ajps.2016.06.006.

    Article  Google Scholar 

  31. Patil H, Tiwari RV, Repka MA. Hot-melt extrusion: from theory to application in pharmaceutical formulation. AAPS PharmSciTech. 2016;17:20–42. https://doi.org/10.1208/s12249-015-0360-7.

    Article  CAS  Google Scholar 

  32. Stanković M, Frijlink HW, Hinrichs WLJ. Polymeric formulations for drug release prepared by hot melt extrusion: application and characterization. Drug Discov Today. 2015;20:812–23. https://doi.org/10.1016/j.drudis.2015.01.012.

    Article  CAS  Google Scholar 

  33. Desai D, Sandhu H, Shah N, Malick W, Zia H, Phuapradit W, et al. Selection of solid-state plasticizers as processing aids for hot-melt extrusion. J Pharm Sci. 2018;107:372–9. https://doi.org/10.1016/j.xphs.2017.09.004.

    Article  CAS  Google Scholar 

  34. Wang W. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharm. 1999;185:129–88. https://doi.org/10.1016/S0378-5173(99)00152-0.

    Article  CAS  Google Scholar 

  35. Jiang W, Schwendeman SP. Stabilization and controlled release of bovine serum albumin encapsulated in poly(d,l-lactide) and poly(ethylene glycol) microsphere blends. Pharm Res. 2001;18:878–85.

    Article  CAS  Google Scholar 

  36. Kita Y, Arakawa T, Lin TY, Timasheff SN. Contribution of the surface free energy perturbation to protein-solvent interactions. Biochemistry. 1994;33:15178–89. https://doi.org/10.1021/bi00254a029.

    Article  CAS  Google Scholar 

  37. Shen J, Lee K, Choi S, Qu W, Wang Y, Burgess DJ. A reproducible accelerated in vitro release testing method for PLGA microspheres. Int J Pharm. 2016;498:274–82. https://doi.org/10.1016/j.ijpharm.2015.12.031.

    Article  CAS  Google Scholar 

  38. Instruction Manual MiniLab II HAAKE Rheomex CTW5. Thermo Scientific; 2007.

  39. Andhariya JV, Choi S, Wang Y, Zou Y, Burgess DJ, Shen J. Accelerated in vitro release testing method for naltrexone loaded PLGA microspheres. Int J Pharm. 2017;520:79–85. https://doi.org/10.1016/j.ijpharm.2017.01.050.

    Article  CAS  Google Scholar 

  40. Verhoeven J, Schaeffer R, Bouwstra JA, Junginger HE. The physico-chemical characterization of poly (2-hydroxyethyl methacrylate-co-methacrylic acid: 2. Effect of water, PEG 400 and PEG 6000 on the glass transition temperature. Polymer (Guildf). 1989;30:1946–50.

  41. Evonik. Technical Information RESOMER® Polymers. 2017.

  42. Ebnesajjad S. Introduction to plastics. In: Chemical resistence of commodity thermoplastics. Amsterdam: Elsevier; 2011. p. xiii–xxv.

    Google Scholar 

  43. Carpenter J, Katayama D, Liu L, Chonkaew W, Menard K. Measurement of Tg in lyophilized protein and protein excipient mixtures by dynamic mechanical analysis. J Therm Anal Calorim. 2009;95:881–4. https://doi.org/10.1007/s10973-007-8986-7.

    Article  CAS  Google Scholar 

  44. Sivandzade F. An analytical model for prediction of controlled release from bulk biodegrading polymer microspheres. Asian J Pharm Clin Res. 2018;11:432–7. https://doi.org/10.22159/ajpcr.2018.v11i3.23219.

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to thank Hovione for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Henriques.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farinha, S., Moura, C., Afonso, M.D. et al. Production of Lysozyme-PLGA-Loaded Microparticles for Controlled Release Using Hot-Melt Extrusion. AAPS PharmSciTech 21, 274 (2020). https://doi.org/10.1208/s12249-020-01816-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01816-8

KEY WORDS

Navigation