Skip to main content
Log in

Drug–Smectite Clay Amorphous Solid Dispersions Processed by Hot Melt Extrusion

  • Research Article
  • Theme: Pharmaceutical Thermal Processing - An Update
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of this study was to introduce smectite clay matrices as a drug delivery carrier for the development of amorphous solid dispersions (ASD). Indomethacin (IND) was processed with two different smectite clays, magnesium aluminium and lithium magnesium sodium silicates, using hot melt extrusion (HME) to prepare solid dispersions. Scanning electron microscopy (SEM), powdered X-ray diffraction (PXRD), and differential scanning calorimetry (DSC) were used to examine the physical form of the drug. Energy-dispersive X-ray (EDX) spectroscopy was used to investigate the drug distribution, and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopic analysis was done to detect any chemical interaction between these two kinds. Both PXRD and DSC analyses showed that drug–clay solid dispersion contained IND in amorphous form. EDX analysis showed a uniform IND dispersion in the extruded powders. ATR-FTIR data presented possible drug and clay interactions via hydrogen bonding. In vitro drug dissolution studies revealed a lag time of about 2 h in the acidic media and a rapid release of IND at pH 7.4. The work demonstrates that preparation of amorphous solid dispersion using inorganic smectite clay particles can effectively increase the dissolution rate of IND.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Keserü GM, Makara GM. The influence of lead discovery strategies on the properties of drug candidates. Nat Rev Drug Discov. 2009;8(3):203–12.

    Google Scholar 

  2. Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44(1):235–49.

    CAS  Google Scholar 

  3. Mithu MSH, Ross SA, Alexander BD, Douroumis D. Solid state thermomechanical engineering of high-quality pharmaceutical salts via solvent free continuous processing. Green Chem. 2020;22(2):540–9.

    CAS  Google Scholar 

  4. Ross SA, Ward A, Basford P, Mcallister M, Douroumis D. Coprocessing of pharmaceutical cocrystals for high quality and enhanced physicochemical stability. 2018;

  5. Malamatari M, Taylor KMG, Malamataris S, Douroumis D, Kachrimanis K. Pharmaceutical nanocrystals: production by wet milling and applications. Drug Discov Today. 2018;23(3):534–47.

    CAS  Google Scholar 

  6. Mithu S, Malamatari M, Douroumis D. Crystal engineering of ketoconazole solid forms with dicarboxylic acids using mechanochemistry. J Pharm Pharmacol. 2017;69:9–10.

    Google Scholar 

  7. Upadhye SB, Kulkarni SJ, Majumdar S, Avery MA, Gul W, ElSohly MA, et al. Preparation and characterization of inclusion complexes of a hemisuccinate ester prodrug of Δ 9-tetrahydrocannabinol with modified beta-cyclodextrins. AAPS PharmSciTech. 2010;11(2):509–17.

    CAS  PubMed Central  Google Scholar 

  8. Wang L, Li H, Wang S, Liu R, Wu Z, Wang C, et al. Enhancing the antitumor activity of berberine hydrochloride by solid lipid nanoparticle encapsulation. AAPS PharmSciTech. 2014;15(4):834–44.

    CAS  PubMed Central  Google Scholar 

  9. Alqahtani F, Belton P, Ward A, Asare-Addo K, Qi S. An investigation into the use of low quantities of functional additives to control drug release from hot melt extruded solid dispersions for poorly soluble drug delivery. Int J Pharm. 2020;119172.

  10. Alhijjaj M, Belton P, Fabian L, Wellner N, Reading M, Qi S. Novel thermal imaging method for rapid screening of drug–polymer miscibility for solid dispersion based formulation development. Mol Pharm. 2018;15(12):5625–36.

    CAS  Google Scholar 

  11. Alhijjaj M, Yassin S, Reading M, Zeitler JA, Belton P, Qi S. Characterization of heterogeneity and spatial distribution of phases in complex solid dispersions by thermal analysis by structural characterization and X-ray micro computed tomography. Pharm Res. 2017;34(5):971–89.

    CAS  Google Scholar 

  12. Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. J Pharm Sci. 1971;60(9):1281–302.

    CAS  Google Scholar 

  13. Abend S, Lagaly G. Sol–gel transitions of sodium montmorillonite dispersions. Appl Clay Sci. 2000;16(3–4):201–27.

    CAS  Google Scholar 

  14. Carretero MI, Pozo M. Clay and non-clay minerals in the pharmaceutical industry: part I. Excipients and medical applications. Appl Clay Sci. 2009;46:73–80.

    CAS  Google Scholar 

  15. Viseras C, Lopez-Galindo A. Pharmaceutical applications of some Spanish clays (sepiolite, palygorskite, bentonite): some preformulation studies. Appl Clay Sci. 1999;14(1–3):69–82.

    CAS  Google Scholar 

  16. Adebisi AO, Conway BR, Asare-Addo K. The influence of fillers on theophylline release from clay matrices. Am J Pharmacol Sci. 2015;3(5):120–5.

    CAS  Google Scholar 

  17. Gonçalves MLCM, Lyra MAM, Oliveira FJVE, Rolim LA, Nadvorny D, Vilarinho ACSG, et al. Use of phyllosilicate clay mineral to increase solubility olanzapine. J Therm Anal Calorim. 2017;127(2):1743–50.

    Google Scholar 

  18. Kim MH, Choi G, Elzatahry A, Vinu A, Choy Y Bin, Choy JH. Review of clay-drug hybrid materials for biomedical applications: administration routes. Clay Clay Miner 2016;64(2):115–130.

  19. McPhee C, Reed J, Zubizarreta I. Core sample preparation. In:Developments in Petroleum Science: Elsevier; 2015. p. 135–79.

  20. Jung H, Kim H, Bin Y, Hwang S, Choy J. Laponite-based nanohybrid for enhanced solubility and controlled release of itraconazole. Int J Pharm. 2008;349:283–90.

    CAS  Google Scholar 

  21. Bahl D, Hudak J, Bogner RH. Comparison of the ability of various pharmaceutical silicates to amorphize and enhance dissolution of indomethacin upon co-grinding. Pharm Dev Technol. 2008;13(3):255–69.

    CAS  Google Scholar 

  22. Löbenberg R, Amidon GL. Modern bioavailability, bioequivalence and biopharmaceutics classification system. new scientific approaches to international regulatory standards. Eur J Pharm Biopharm. 2000;50(1):3–12.

    Google Scholar 

  23. Alsaidan SM, Alsughayer AA, Eshra AG. Improved dissolution rate of indomethacin by adsorbents. Drug Dev Ind Pharm. 1998 Jan 1;24(4):389–94.

    CAS  Google Scholar 

  24. Zhang W, Zhang C. ning, He Y, Duan B yan, Yang G yi, Ma W dong, et al. Factors affecting the dissolution of indomethacin solid dispersions. AAPS PharmSciTech. 2017;18(8):3258–73.

    CAS  Google Scholar 

  25. Angadi G, Narayana Rao Narasimha Murthy H, Ramakrishna S, Firdosh S, Nagappa R, Munishamaiah K. Effect of screw configuration on the dispersion of nanofillers in thermoset polymers. J Polym Eng 2017;37(8):815–825.

  26. Breitenbach J. Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm. 2002;54:107–17.

    CAS  Google Scholar 

  27. Repka MA, Battu SK, Upadhye SB, Thumma S, Crowley MM, Zhang F, et al. Pharmaceutical applications of hot-melt extrusion: part II. Drug Dev Ind Pharm. 2007;33:1043–57.

    CAS  Google Scholar 

  28. Liu H, Zhu L, Wang P, Zhang X, Gogos CG. Effects of screw configuration on indomethacin dissolution behavior in Eudragit E PO. Adv Polym Technol. 2012;31(4):331–42.

    CAS  Google Scholar 

  29. Hwang I, Kang C-Y, Park J-B. Advances in hot-melt extrusion technology toward pharmaceutical objectives. J Pharm Investig. 2017;47(2):123–32.

    CAS  Google Scholar 

  30. Prasad D, Chauhan H, Atef E. Amorphous stabilization and dissolution enhancement of amorphous ternary solid dispersions: combination of polymers showing drug–polymer interaction for synergistic effects. J Pharm Sci. 2014;103(11):3511–23.

    CAS  Google Scholar 

  31. Maniruzzaman M, Nair A, Scoutaris N, Bradley MSA, Snowden MJ, Douroumis D. One-step continuous extrusion process for the manufacturing of solid dispersions. Int J Pharm. 2015;496(1):42–51.

    CAS  Google Scholar 

  32. Villar MV, Gómez-Espina R, Gutiérrez-Nebot L. Basal spacings of smectite in compacted bentonite. Appl Clay Sci. 2012;65:95–105.

    Google Scholar 

  33. El-Badry M, Fetih G, Fathy M. Improvement of solubility and dissolution rate of indomethacin by solid dispersions in Gelucire 50/13 and PEG4000. Saudi Pharm J. 2009;17(3):217–25.

    PubMed Central  Google Scholar 

  34. Grim RE, Bradley WF. Investigation of the effect of heat on the clay minerals illite and montmorillonite. J Am Ceram Soc. 1940;23(8):242–8.

    CAS  Google Scholar 

  35. Corcione CE, Maffezzoli A. Thermochimica acta glass transition in thermosetting clay-nanocomposite polyurethanes. 2009;485:43–8.

  36. Qazvini NT, Chehrazi E. Glass transition behavior and dynamic fragility of PMMA-SAN miscible blend-clay nanocomposites. J Macromol Sci Part B Phys. 2011;50(11):2165–77.

    CAS  Google Scholar 

  37. Tabak A, Yilmaz N, Eren E, Caglar B, Afsin B, Sarihan A. Structural analysis of naproxen-intercalated bentonite (Unye). Chem Eng J. 2011;174(1):281–8.

    CAS  Google Scholar 

  38. Kevadiya BD, Patel HA, Joshi GV, Abdi SHR, Bajaj HC. Montmorillonite-alginate composites as a drug delivery system : intercalation and in vitro release of diclofenac sodium. Indi. 2010;72(6):732–7.

    CAS  Google Scholar 

  39. Ghadiri M, Chrzanowski W, Lee WH, Fathi A, Dehghani F, Rohanizadeh R. Physico-chemical, mechanical and cytotoxicity characterizations of Laponite®/alginate nanocomposite. Appl Clay Sci. 2013;85:64–73.

    CAS  Google Scholar 

  40. Patel HA, Somani RS, Bajaj HC, Jasra RV. Preparation and characterization of phosphonium montmorillonite with enhanced thermal stability. Appl Clay Sci. 2007;35(3–4):194–200.

    CAS  Google Scholar 

  41. A RM, Kebriaee A, Keshavarz M, Ahmadi A, Mohtat B. Preparation and in-vitro evaluation of indomethacin nanoparticles. 2010;18(3):185–92.

  42. Fini A, Cavallari C, Ospitali F. Raman and thermal analysis of indomethacin/PVP solid dispersion enteric microparticles. Eur J Pharm Biopharm. 2008;70(1):409–20.

    CAS  Google Scholar 

  43. Kocbek P, Baumgartner S, Kristl J. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int J Pharm. 2006;312(1–2):179–86.

    CAS  Google Scholar 

  44. Jatav S, Joshi, M Y. Chemical stability of Laponite in aqueous media. y Sci 2014;97–98(August):72–77.

  45. Trivedi V, Nandi U, Maniruzzaman M, Coleman NJ. Intercalated theophylline-smectite hybrid for pH-mediated delivery. Drug Deliv Transl Res. 2018;8:1781–9.

    CAS  PubMed Central  Google Scholar 

  46. Netpradit S, Thiravetyan P, Towprayoon S. Adsorption of three azo reactive dyes by metal hydroxide sludge: effect of temperature, pH, and electrolytes. J Colloid Interface Sci. 2004;270(2):255–61.

    CAS  Google Scholar 

  47. Tabak A, Eren E, Afsin B, Caglar B. Determination of adsorptive properties of a Turkish sepiolite for removal of reactive blue 15 anionic dye from aqueous solutions. J Hazard Mater. 2009;161(2–3):1087–94.

    CAS  Google Scholar 

  48. Tabak A, Baltas N, Afsin B, Emirik M, Caglar B, Eren E. Adsorption of reactive red 120 from aqueous solutions by cetylpyridinium-bentonite. J Chem Technol Biotechnol. 2010;85(9):1199–207.

    CAS  Google Scholar 

  49. Tombacz E, Szekeres M. Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes. Appl Clay Sci. 2004;27(1–2):75–94.

    CAS  Google Scholar 

  50. Alonzo DE, Zhang GGZ, Zhou D, Gao Y, Taylor LS. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res. 2010;27(4):608–18.

    CAS  Google Scholar 

Download references

Funding

This project has received funding from the Interreg 2 Seas programme 2014–2020 co-funded by the European Regional Development Fund under subsidy contract 2S01-059_IMODE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Douroumis.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Guest Editors: Feng Zhang, Michael Repka and Suresh Bandari

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandi, U., Mithu, M.S., Hurt, A.P. et al. Drug–Smectite Clay Amorphous Solid Dispersions Processed by Hot Melt Extrusion. AAPS PharmSciTech 21, 276 (2020). https://doi.org/10.1208/s12249-020-01813-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01813-x

Key Words

Navigation