Skip to main content
Log in

Enhancing the Furosemide Permeability by Papain Minitablets Through a Triple Co-culture In Vitro Intestinal Cell Model

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The administration of medicines by the oral route is the most used approach for being very convenient. Although it is the most popular, this route also has absorption, and consequently, bioavailability limitations. In this sense, several pharmacotechnical strategies have been used to improve drug absorption, one of which is the use of permeation promoters. Papain is a very versatile plant enzyme that can be used as a permeation promoter of various active compounds. This study aimed to evaluate the safety of papain and the formulation of native papain minitablets to promote in vitro permeation of furosemide through an innovative biomimetic triple co-culture model of Caco-2, HT29-MTX, and Raji cells. Regarding permeation, furosemide and metaprolol concentrations are determined with HPLC; those are used to calculate Papp. Monolayer integrity was evaluated using TEER and Lucifer Yellow. In the presence of papain, TEER decreased two-fold and the Papp of furosemide increased six-fold. The results suggest that native papain minitablets can be used as therapeutic adjuvants to enhance the permeation of drugs significantly improving bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of Variance

ATCC:

American Type Culture Collection

BAPA:

Nα-benzoyl-DL-arginine 4-nitroanilide hydrochloride

BSA:

Bovine serum albumin

DAPI:

4′,6-diamidine-2′-phenylindole dihydrochloride

DMEM:

Dulbecco’s modified Eagle’s medium

EC:

Enzyme classification

ECACC:

European Collection of Cell Cultures

FBS:

Fetal bovine serum

FURO:

Furosemide

GIT:

Gastrointestinal tract

HBSS:

Hank’s balanced salt solution

Hepes:

4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid

LY:

Lucifer yellow

METO:

Metoprolol

MTT:

(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)

P app :

Permeability coefficient

P-gp:

P-glycoprotein

PPN:

Papain

RPMI:

Roswell Park Memorial Institute

SEM:

Scanning electron microscope

TEER:

Transepithelial electrical resistance

TX-100:

Triton™ X-100

References

  1. Abuhelwa AY, Williams DB, Upton RN, Foster DJR. Food, gastrointestinal pH, and models of oral drug absorption. Eur J Pharm Biopharm. 2017;112:234–48. https://doi.org/10.1016/j.ejpb.2016.11.034.

    Article  CAS  Google Scholar 

  2. Pinto JF. Site-specific drug delivery systems within the gastro-intestinal tract: from the mouth to the colon. Int J Pharm. 2010;395:44–52. https://doi.org/10.1016/J.IJPHARM.2010.05.003.

    Article  CAS  Google Scholar 

  3. Maher S, Mrsny RJ, Brayden DJ. Intestinal permeation enhancers for oral peptide delivery. Adv Drug Deliv Rev. 2016;106:277–319. https://doi.org/10.1016/J.ADDR.2016.06.005.

    Article  CAS  Google Scholar 

  4. Corazza FG, Ernesto JV, Nambu FAN, de Carvalho LR, Leite-Silva VR, Varca GHC, et al. Papain-cyclodextrin complexes as an intestinal permeation enhancer: permeability and in vitro safety evaluation. J Drug Deliv Sci Technol. 2020;55:101413. https://doi.org/10.1016/j.jddst.2019.101413.

    Article  CAS  Google Scholar 

  5. Leichner C, Menzel C, Laffleur F, Bernkop-Schnürch A. Development and in vitro characterization of a papain loaded mucolytic self-emulsifying drug delivery system (SEDDS). Int J Pharm. 2017;530:346–53. https://doi.org/10.1016/j.ijpharm.2017.08.059.

    Article  CAS  Google Scholar 

  6. Varca GHC, Lopes PS, Ferraz HG. Development of papain containing pellets produced by extrusion-spheronization: an operational stage approach. Drug Dev Ind Pharm. 2015;41:430–5. https://doi.org/10.3109/03639045.2013.877481.

    Article  CAS  Google Scholar 

  7. Sharma M, Sharma V, Panda AK, Majumdar DK. Enteric microsphere formulations of papain for oral delivery. Yakugaku Zasshi. 2011;131:697–709. https://doi.org/10.1248/yakushi.131.697.

    Article  CAS  Google Scholar 

  8. Zafar H, Kiani MH, Raza F, Rauf A, Chaudhery I, Ahmad NM, et al. Design of enzyme decorated mucopermeating nanocarriers for eradication of H pylori infection. J Nanopart Res. 2020;22:4. https://doi.org/10.1007/s11051-019-4719-7.

    Article  CAS  Google Scholar 

  9. Issa MG, de Souza NV, Duque MD, Ferraz HG. Physical characterization of multiparticulate systems. Brazilian J Pharm Sci. 2017;53. https://doi.org/10.1590/s2175-97902017000400216.

  10. Tissen C, Woertz K, Breitkreutz J, Kleinebudde P. Development of mini-tablets with 1 mm and 2 mm diameter. Int J Pharm. 2011;416:164–70. https://doi.org/10.1016/j.ijpharm.2011.06.027.

    Article  CAS  Google Scholar 

  11. Aleksovski A, Dreu R, Gašperlin M, Planinšek O. Mini-tablets: a contemporary system for oral drug delivery in targeted patient groups. Expert Opin Drug Deliv. 2015;12:65–84. https://doi.org/10.1517/17425247.2014.951633.

    Article  CAS  Google Scholar 

  12. Shah AK, Agnihotri SA. Recent advances and novel strategies in pre-clinical formulation development: an overview. J Control Release. 2011;156:281–96. https://doi.org/10.1016/j.jconrel.2011.07.003.

    Article  CAS  Google Scholar 

  13. Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun. 1991;175:880–5. https://doi.org/10.1016/0006-291X(91)91647-U.

    Article  CAS  Google Scholar 

  14. Hu M, Ling J, Lin H, Chen J. Use of Caco-2 cell monolayers to study drug absorption and metabolism. Optim Drug Discov. 2004:19–35. https://doi.org/10.1385/1-59259-800-5:019.

  15. Ölander M, Wiśniewski JR, Matsson P, Lundquist P, Artursson P. The proteome of filter-grown Caco-2 cells with a focus on proteins involved in drug disposition. J Pharm Sci. 2016;105:817–27. https://doi.org/10.1016/j.xphs.2015.10.030.

    Article  CAS  Google Scholar 

  16. Antunes F, Andrade F, Araújo F, Ferreira D, Sarmento B. Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. Eur J Pharm Biopharm. 2013;83:427–35. https://doi.org/10.1016/j.ejpb.2012.10.003.

    Article  CAS  Google Scholar 

  17. Araújo F, Pereira C, Costa J, Barrias C, Granja PL, Sarmento B. In vitro M-like cells genesis through a tissue-engineered triple-culture intestinal model. J Biomed Mater Res - Part B Appl Biomater. 2016;104:782–8. https://doi.org/10.1002/jbm.b.33508.

    Article  CAS  Google Scholar 

  18. Ciappellano SG, Tedesco E, Venturini M, Benetti F. In vitro toxicity assessment of oral nanocarriers. Adv Drug Deliv Rev. 2016;106:381–401. https://doi.org/10.1016/j.addr.2016.08.007.

    Article  CAS  Google Scholar 

  19. Li D, Zhuang J, Yang Y, Wang D, Yang J, He H, et al. Loss of integrity of doxorubicin liposomes during transcellular transportation evidenced by fluorescence resonance energy transfer effect. Colloids Surf B: Biointerfaces. 2018;171:224–32. https://doi.org/10.1016/j.colsurfb.2018.07.022.

    Article  CAS  Google Scholar 

  20. Schimpel C, Teubl B, Absenger M, Meindl C, Fröhlich E, Leitinger G, et al. Development of an advanced intestinal in vitro triple culture permeability model to study transport of nanoparticles. Mol Pharm. 2014;11:808–18. https://doi.org/10.1021/mp400507g.

    Article  CAS  Google Scholar 

  21. Mitra B, Chang J, Wu SJ, Wolfe CN, Ternik RL, Gunter TZ, et al. Feasibility of mini-tablets as a flexible drug delivery tool. Int J Pharm. 2017;525:149–59. https://doi.org/10.1016/j.ijpharm.2017.04.037.

    Article  CAS  Google Scholar 

  22. Filho VJT, Andreazza IF, Sato MEO, Murakami FS. Development of a multiparticulate system containing enteric-release mini-tablets of omeprazole. Brazilian J Pharm Sci. 2014;50:505–12. https://doi.org/10.1590/S1984-82502014000300008.

    Article  CAS  Google Scholar 

  23. Ferraz CC, Varca GHC, Vila MMDC, Lopes PS. Validation of in vitro analytical method to measure papain activity in pharmaceutical formulations. Int J Pharm Pharm Sci. 2014;6:658–61.

    CAS  Google Scholar 

  24. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4.

    Article  CAS  Google Scholar 

  25. Béduneau A, Tempesta C, Fimbel S, Pellequer Y, Jannin V, Demarne F, et al. A tunable Caco-2/HT29-MTX co-culture model mimicking variable permeabilities of the human intestine obtained by an original seeding procedure. Eur J Pharm Biopharm. 2014;87:290–8. https://doi.org/10.1016/j.ejpb.2014.03.017.

    Article  CAS  Google Scholar 

  26. Passey S, Pellegrin S, Mellor H. Scanning electron microscopy of cell surface morphology. Curr Protoc Cell Biol. 2007;37:4.17.1–4.17.13. https://doi.org/10.1002/0471143030.cb0417s37.

    Article  Google Scholar 

  27. Wang X, Meng M, Gao L, Liu T, Xu Q, Zeng S. Permeation of astilbin and taxifolin in Caco-2 cell and their effects on the P-gp. Int J Pharm. 2009;378:1–8. https://doi.org/10.1016/j.ijpharm.2009.05.022.

    Article  CAS  Google Scholar 

  28. Scott JE. Histochemistry of Alcian blue. 3. The molecular biological basis of staining by Alcian blue 8GX and analogous phthalocyanins. Histochemie. 1972;32:191–212. https://doi.org/10.1007/bf00306028.

    Article  CAS  Google Scholar 

  29. Puchtler H, Waldrop FS, Meloan SN, Terry MS, Conner HM. Methacarn (methanol-Carnoy) fixation. Practical and theoretical considerations. Histochemie. 1970;21:97–116. https://doi.org/10.1007/bf00306176.

    Article  CAS  Google Scholar 

  30. Loo Y, Grigsby CL, Yamanaka YJ, Chellappan MK, Jiang X, Mao HQ, et al. Comparative study of nanoparticle-mediated transfection in different GI epithelium co-culture models. J Control Release. 2012;160:48–56. https://doi.org/10.1016/j.jconrel.2012.01.041.

    Article  CAS  Google Scholar 

  31. Araújo F, Sarmento B. Towards the characterization of an in vitro triple co-culture intestine cell model for permeability studies. Int J Pharm. 2013;458:128–34. https://doi.org/10.1016/j.ijpharm.2013.10.003.

    Article  CAS  Google Scholar 

  32. Köllner S, Dünnhaupt S, Waldner C, Hauptstein S. Pereira De Sousa I, Bernkop-Schnürch A. Mucus permeating thiomer nanoparticles. Eur J Pharm Biopharm. 2015;97:265–72. https://doi.org/10.1016/j.ejpb.2015.01.004.

    Article  CAS  Google Scholar 

  33. Amri E, Mamboya F. Papain, a plant enzyme of biological importance: a review. Am J Biochem Biotechnol. 2012;8:99–104. https://doi.org/10.3844/ajbbsp.2012.99.104.

    Article  CAS  Google Scholar 

  34. Frisch SM, Screaton RA. Anoikis mechanisms. Curr Opin Cell Biol. 2001;13:555–62. https://doi.org/10.1016/S0955-0674(00)00251-9.

    Article  CAS  Google Scholar 

  35. Epstein MA, Barr YM. Characteristics and mode of growth of tissue culture strain (EB1) of human lymphoblasts from burkitt’s lymphoma. J Natl Cancer Inst. 1965;34:231–40. https://doi.org/10.1093/jnci/34.2.231.

    Article  CAS  Google Scholar 

  36. Lindenberg M, Kopp S, Dressman JB. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur J Pharm Biopharm. 2004;58:265–78. https://doi.org/10.1016/j.ejpb.2004.03.001.

    Article  Google Scholar 

  37. Granero G, Longhi MR, Mora MJ, Junginger HE, Midha KK, Shah VP, et al. Biowaiver monographs for immediate release solid Oral dosage forms: furosemide. J Pharm Sci. 2010;99:2544–56. https://doi.org/10.1002/jps.22030.

    Article  CAS  Google Scholar 

  38. Terao T, Matsuda K, Shouji H. Improvement in site-specific intestinal absorption of furosemide by Eudragit L100-55. J Pharm Pharmacol. 2001;53:433–40. https://doi.org/10.1211/0022357011775721.

    Article  CAS  Google Scholar 

  39. Nielsen LH, Melero A, Keller SS, Jacobsen J, Garrigues T, Rades T, et al. Polymeric microcontainers improve oral bioavailability of furosemide. Int J Pharm. 2016;504:98–109. https://doi.org/10.1016/j.ijpharm.2016.03.050.

    Article  CAS  Google Scholar 

  40. Avdeef A, Tam KY. How well can the Caco-2/Madin−Darby canine kidney models predict effective human Jejunal permeability? J Med Chem. 2010;53:3566–84. https://doi.org/10.1021/jm901846t.

    Article  CAS  Google Scholar 

  41. Gul S, Hussain S, Thomas MP, Resmini M, Verma CS, Thomas EW, et al. Generation of nucleophilic character in the Cys25/His159 ion pair of papain involves Trp177 but not Asp158. Biochemistry. 2008;47:2025–35. https://doi.org/10.1021/bi702126p.

    Article  CAS  Google Scholar 

  42. Kamphuis IG, Kalk KH, Swarte MB, Drenth J. Structure of papain refined at 1.65 A resolution. J Mol Biol. 1984;179:233–56.

    Article  CAS  Google Scholar 

  43. Iqbal J, Sarti F, Perera G, Bernkop-Schnürch A. Development and in vivo evaluation of an oral drug delivery system for paclitaxel. Biomaterials. 2011;32:170–5. https://doi.org/10.1016/j.biomaterials.2010.09.036.

    Article  CAS  Google Scholar 

  44. McConnell EL, Fadda HM, Basit AW. Gut instincts: explorations in intestinal physiology and drug delivery. Int J Pharm. 2008;364:213–26. https://doi.org/10.1016/j.ijpharm.2008.05.012.

    Article  CAS  Google Scholar 

  45. Müller C, Perera G, König V, Bernkop-Schnürch A. Development and in vivo evaluation of papain-functionalized nanoparticles. Eur J Pharm Biopharm. 2014;87:125–31. https://doi.org/10.1016/j.ejpb.2013.12.012.

    Article  CAS  Google Scholar 

  46. Sjöberg Å, Lutz M, Tannergren C, Wingolf C, Borde A, Ungell AL. Comprehensive study on regional human intestinal permeability and prediction of fraction absorbed of drugs using the Ussing chamber technique. Eur J Pharm Sci. 2013;48:166–80. https://doi.org/10.1016/j.ejps.2012.10.007.

    Article  CAS  Google Scholar 

  47. Lundquist P, Artursson P. Oral absorption of peptides and nanoparticles across the human intestine: opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev. 2016;106:256–76. https://doi.org/10.1016/j.addr.2016.07.007.

    Article  CAS  Google Scholar 

  48. Stremnitzer C, Manzano-Szalai K, Willensdorfer A, Starkl P, Pieper M, König P, et al. Papain degrades tight junction proteins of human keratinocytes in vitro and sensitizes C57BL/6 mice via the skin independent of its enzymatic activity or TLR4 activation. J Invest Dermatol. 2015;135:1790–800. https://doi.org/10.1038/jid.2015.58.

    Article  CAS  Google Scholar 

  49. Cano-Cebrián MJ, Zornoza T, Granero L, Polache A. Intestinal absorption enhancement via the paracellular route by fatty acids, chitosans and others: a target for drug delivery. Curr Drug Deliv. 2005;2:9–22.

    Article  Google Scholar 

  50. Gómez EC, Anguiano Igea S, Gómez Amoza JL, Otero Espinar FJ. Evaluation of the promoting effect of soluble cyclodextrins in drug nail penetration. Eur J Pharm Sci. 2018;117:270–8. https://doi.org/10.1016/j.ejps.2018.02.028.

    Article  CAS  Google Scholar 

  51. Wang M, Sun B, Feng J, Zhang H, Liu B, Li C, et al. Investigation of transport mechanism of exendin-4 across Madin Darby canine kidney cell monolayers. Biol Pharm Bull. 2012;35:745–52. https://doi.org/10.1248/bpb.35.745.

    Article  CAS  Google Scholar 

  52. Cone RA. Barrier properties of mucus. Adv Drug Deliv Rev. 2009;61:75–85. https://doi.org/10.1016/j.addr.2008.09.008.

    Article  CAS  Google Scholar 

  53. Lorkowski G. Gastrointestinal absorption and biological activities of serine and cysteine proteases of animal and plant origin: review on absorption of serine and cysteine proteases. Int J Physiol Pathophysiol Pharmacol. 2012;4:10–27.

    CAS  Google Scholar 

  54. Menzel C, Bernkop-Schnürch A. Enzyme decorated drug carriers: targeted swords to cleave and overcome the mucus barrier. Adv Drug Deliv Rev. 2018;124:164–74. https://doi.org/10.1016/j.addr.2017.10.004.

    Article  CAS  Google Scholar 

  55. Des RA, EGE R, Gullberg E, Préat V, Schneider YJ, Artursson P. Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. Eur J Pharm Sci. 2005;25:455–65. https://doi.org/10.1016/j.ejps.2005.04.015.

    Article  CAS  Google Scholar 

  56. Antoine D, Pellequer Y, Tempesta C, Lorscheidt S, Kettel B, Tamaddon L, et al. Biorelevant media resistant co-culture model mimicking permeability of human intestine. Int J Pharm. 2015;481:27–36. https://doi.org/10.1016/j.ijpharm.2015.01.028.

    Article  CAS  Google Scholar 

  57. Bazes A, Nollevaux G, Coco R, Joly A, Sergent T, Schneider YJ. Development of a triculture based system for improved benefit/risk assessment in pharmacology and human food. BMC Proc. 2011;5(Suppl 8):P67. https://doi.org/10.1186/1753-6561-5-S8-P67.

    Article  Google Scholar 

  58. des Rieux A, Fievez V, Théate I, Mast J, Préat V, Schneider YJ. An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells. Eur J Pharm Sci. 2007;30:380–91. https://doi.org/10.1016/j.ejps.2006.12.006.

    Article  CAS  Google Scholar 

  59. Lichtenstein D, Ebmeyer J, Meyer T, Behr AC, Kästner C, Böhmert L, et al. It takes more than a coating to get nanoparticles through the intestinal barrier in vitro. Eur J Pharm Biopharm. 2017;118:21–9. https://doi.org/10.1016/j.ejpb.2016.12.004.

    Article  CAS  Google Scholar 

  60. Sakhon OS, Ross B, Gusti V, Pham AJ, Vu K, Lo DD. M cell-derived vesicles suggest a unique pathway for trans-epithelial antigen delivery. Tissue Barriers. 2015;3. https://doi.org/10.1080/21688370.2015.1004975.

  61. Kernéis S, Bogdanova A, Kraehenbuhl JP, Pringault E. Conversion by Peyer’s patch lymphocytes of human enterocytes into M cells that transport bacteria. Science (80-). 1997;277:949–52. https://doi.org/10.1126/science.277.5328.949.

    Article  Google Scholar 

  62. Mabbott NA, Donaldson DS, Ohno H, Williams IR, Mahajan A. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 2013;6:666–77. https://doi.org/10.1038/mi.2013.30.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Gabriela Nemesio Fazolin from the Center of Chemistry and Environment at the Energy and Nuclear Research Institute for support, Sheila Schuindt do Carmo and Waldir Caldeira from the Center of Images Acquisition and Microscopy at the Institute of Biosciences of University of São Paulo for the acquisition of fluorescence confocal microscopy images. and Rose Eli Grassi Rici from the Advanced Center for Diagnostic Imaging at the School of Veterinary Medicine and Animal Science of University of São Paulo for the acquisition of SEM images.

Funding

This work was supported by São Paulo Research Foundation (FAPESP) (FAPESP grant #2010/10935-9, #2015/19213-0, #2015/19212-3, and #2016/22916-5).

Author information

Authors and Affiliations

Authors

Contributions

Resources, formal analysis, investigation, and writing-original draft: F.C., J.E., G.V., and D.V.; investigation: F.N. and L.C.; writing–reviewing and funding acquisition: D.V. and V.L.S.; supervision, resources, funding acquisition, and writing–reviewing: D.V, N.A.F, and P.L.

Corresponding author

Correspondence to Daniel P. Vieira.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Triple co-culture cells mimic intestinal epithelium properties with mucus production.

Papain minitablets increase furosemide permeation by six-fold.

Papain promotes safe and effective oral permeation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corazza, F.G., Ernesto, J.V., Nambu, F.A.N. et al. Enhancing the Furosemide Permeability by Papain Minitablets Through a Triple Co-culture In Vitro Intestinal Cell Model. AAPS PharmSciTech 21, 255 (2020). https://doi.org/10.1208/s12249-020-01796-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01796-9

KEY WORDS

Navigation