Skip to main content

Advertisement

Log in

Formulation and Pharmacokinetic Evaluation of a Drug-in-Adhesive Patch for Transdermal Delivery of Koumine

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of this study was to develop a suitable drug-in-adhesive patch for transdermal delivery of koumine. Acrylic polymer Duro-Tak® 87-4287, which contains hydroxyl groups, may significantly enhance the skin permeation of koumine from transdermal patches containing 0.93–3.72% koumine. Among permeation enhancers, 10% azone showed the greatest potential and increased the flux of koumine to 1.48-fold that of the control. Therefore, an optimized patch formulation containing 3.72% koumine and 10% azone in Duro-Tak® 87-4287 that offers good physical properties was selected for an in vivo pharmacokinetic study using rats. The maximal plasma drug concentration (Cmax) of koumine after transdermal administration (4 mg/patch) was 25.80 ± 1.51 ng/mL, which was in the range of those after oral administration (3 mg/kg and 15 mg/kg). The time to the maximal concentration (Tmax) and the half-life (t1/2) of the drug with transdermal administration were 3.96 ± 0.46 h and 21.10 ± 1.36 h, respectively, which were longer than those with oral administration. Furthermore, the area under the concentration-time curve (AUC0–72 h) of 898.20 ± 45.57 ng·h/mL for the transdermal patch was much higher than that for oral administration (15 mg/kg). In conclusion, the drug-in-adhesive patch containing koumine provides a steady plasma koumine level and sustained release in vivo and can be an effective means of transdermal delivery for koumine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dutt V, Thakur S, Dhar VJ, Sharma A. The genus Gelsemium: an update. Pharmacogn Rev. 2010;4:185–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Rujjanawate C, Kanjanapothi D, Panthong A. Pharmacological effect and toxicity of alkaloids from Gelsemium elegans Benth. J Ethnopharmacol. 2003;89:91–5.

    CAS  PubMed  Google Scholar 

  3. Su YP, Shen J, Xu Y, Zheng M, Yu CX. Preparative separation of alkaloids from Gelsemium elegans Benth. using pH-zone-refining counter-current chromatography. J Chromatogr A. 2011;1218:3695–8.

    CAS  PubMed  Google Scholar 

  4. Fang L, Zhou J, Lin YL, Wang X, Sun QL, Li JL, et al. Large-scale separation of alkaloids from Gelsemium elegans by pH-zone-refining counter-current chromatography with a new solvent system screening method. J Chromatogr A. 2013;1307:80–5.

    CAS  PubMed  Google Scholar 

  5. Zhang XH, Chen Y, Gao B, Luo DL, Wen YY, Ma XL. Apoptotic effect of koumine on human breast cancer cells and the mechanism involved. Cell Biochem Biophys. 2015;72:411–6.

    CAS  PubMed  Google Scholar 

  6. Zhang LL, Huang CQ, Zhang ZY, Wang ZR, Lin JM. Therapeutic effects of koumine on psoriasis: an experimental study in mice. J First Mil Univ. 2005;25:547–9.

    Google Scholar 

  7. Qiu HQ, Xu Y, Jin GL, Yang J, Liu M, Li SP, et al. Koumine enhances spinal cord 3α-hydroxysteroid oxidoreductase expression and activity in a rat model of neuropathic pain. Mol Pain. 2015;11:46.

    PubMed  PubMed Central  Google Scholar 

  8. Xu Y, Qiu HQ, Liu H, Liu M, Huang ZY, Yang J, et al. Effects of koumine, an alkaloid of Gelsemium elegans Benth., on inflammatory and neuropathic pain models and possible mechanism with allopregnanolone. Pharmacol Biochem Behav. 2012;101:504–14.

    CAS  PubMed  Google Scholar 

  9. Liu M, Huang HH, Yang J, Su YP, Lin HW, Lin LQ, et al. The active alkaloids of Gelsemium elegans Benth. are potent anxiolytics. Psychopharmacology. 2013;225:839–51.

    CAS  PubMed  Google Scholar 

  10. Chen CJ, Zhong ZF, Xin ZM, Hong LH, Su YP, Yu CX. Koumine exhibits anxiolytic properties without inducing adverse neurological effects on functional observation battery, open-field and Vogel conflict tests in rodents. J Nat Med. 2017;71:397–408.

    CAS  PubMed  Google Scholar 

  11. Yang J, Cai HD, Zeng YL, Chen ZH, Fang MH, Su YP, et al. Effects of koumine on adjuvant- and collagen-induced arthritis in rats. J Nat Prod. 2016;79:2635–43.

    CAS  PubMed  Google Scholar 

  12. Sharif K, Sharif A, Jumah F, Oskouian R, Tubbs RS. Rheumatoid arthritis in review: clinical, anatomical, cellular and molecular points of view. Clin Anat. 2018;31:216–23.

    PubMed  Google Scholar 

  13. Yu CX, Xu Y, Yang J, Su YP, Cai HD. Chinese Patent No. ZL 201110174657.6 Beijing: National Intellectual Property Administration, PRC. 2012.

  14. Yu CX, Xu Y, Yang J, Su YP, Cai HD. U.S. Patent No. 9,078,890 B2 Washington, DC: U.S. Patent and Trademark Office. 2015.

  15. Wang L, Sun Q, Zhao N, Wen YQ, Song Y, Meng FH. Ultra-liquid chromatography tandem mass spectrometry (UPLC-MS/MS)-based pharmacokinetics and tissue distribution study of koumine and the detoxification mechanism of Glycyrrhiza uralensis Fisch on Gelsemium elegans Benth. Molecules. 2018;23:1693–706.

    PubMed Central  Google Scholar 

  16. Wang L, Wen YQ, Meng FH. Simultaneous determination of gelsemine and koumine in rat plasma by UPLC-MS/MS and application to pharmacokinetic study after oral administration of Gelsemium elegans Benth extract. Biomed Chromatogr. 2018;32:e4201–20.

    PubMed  Google Scholar 

  17. Al Hanbali OA, Khan HMS, Sarfraz M, Arafat M, Ijaz S, Hameed A. Transdermal patches: design and current approaches to painless drug delivery. Acta Pharma. 2019;69:197–215.

    Google Scholar 

  18. Subedi RK, Oh SY, Chun MK, Choi HK. Recent advances in transdermal drug delivery. Arch Pharm Res. 2010;33:339–51.

    CAS  PubMed  Google Scholar 

  19. Liu CT, Wang QW, Wang CH. The structure of koumine. Acta ChimicaSinica. 1986;4:73–92.

    Google Scholar 

  20. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26.

    CAS  PubMed  Google Scholar 

  21. Naik A, Kalia YN, Guy RH. Transdermal drug delivery: overcoming the skin's barrier function. Pharm Sci Technolo Today. 2000;3:318–26.

    CAS  Google Scholar 

  22. Tan HS, Pfister WR. Pressure-sensitive adhesives for transdermal drug delivery systems. Pharm Sci Technolo Today. 1999;2:60–9.

    CAS  Google Scholar 

  23. Lobo S, Sachdeva S, Goswami T. Role of pressure-sensitive adhesives in transdermal drug delivery systems. Ther Deliv. 2016;7:33–48.

    CAS  PubMed  Google Scholar 

  24. Venkatraman S, Gale R. Skin adhesives and skin adhesion: 1. Transdermal drug delivery systems. Biomaterials. 1998;19:1119–36.

    CAS  PubMed  Google Scholar 

  25. Rhee YS, Nguyen T, Park ES, Chi SC. Formulation and biopharmaceutical evaluation of a transdermal patch containing aceclofenac. Arch Pharm Res. 2013;36:602–7.

    CAS  PubMed  Google Scholar 

  26. Tuntiyasawasdikul S, Limpongsa E, Jaipakdee N, Sripanidkulchai B. A monolithic drug-in-adhesive patch of methoxyflavones from Kaempferiaparviflora: in vitro and in vivo evaluation. Int J Pharm. 2015;478:486–95.

    CAS  PubMed  Google Scholar 

  27. Marwah H, Garg T, Goyal AK, Rath G. Permeation enhancer strategies in transdermal drug delivery. Drug Deliv. 2016;23:564–78.

    CAS  PubMed  Google Scholar 

  28. Shahid N, Siddique MI, Razzaq Z, Katas H, Waqas MK, Rahman KU. Fabrication and characterization of matrix type transdermal patches loaded with tizanidine hydrochloride: potential sustained release delivery system. Drug Dev Ind Pharm. 2018;44:2061–70.

    CAS  PubMed  Google Scholar 

  29. Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China, vol. IV. China Medical Science Press, Beijing. 2015.

  30. Sinn Aw M, Kurian M, Losic D. Non-eroding drug-releasing implants with ordered nanoporous and nanotubular structures: concepts for controlling drug release. Biomater Sci. 2014;2:10–34.

    PubMed  Google Scholar 

  31. Chen JZ, Li Y, Xiao JP, Wu SS, Song HW. Development of a sensitive and rapid UPLC-MS/MS method for the determination of koumine in rat plasma: application to a pharmacokinetic study. Biomed Chromatogr. 2013;27:736–40.

    CAS  PubMed  Google Scholar 

  32. Ye LX, Su YP, Cao DX, Lin J, Yu CX. Content determination and stability of koumine by UPLC. Chin J Mod Appl Pharm. 2015;32:471–4.

    CAS  Google Scholar 

  33. Shaw A, Coleone-Carvalho AC, Hollingshurst J, Draper M, Machado Neto JG. Development of a new test cell to measure cumulative permeation of water-insoluble pesticides with low vapor pressure through protective clothing and glove materials. Ind Health. 2017;55:555–63.

    PubMed  PubMed Central  Google Scholar 

  34. Ashara KC, Shah KV. Association of permeability and lipid content of membrane. Folia Med (Plovdiv). 2017;59:203–9.

    CAS  Google Scholar 

  35. Nair AB, Gupta S, Al-Dhubiab BE, Jacob S, Shinu P, Shah J, et al. Effective therapeutic delivery and bioavailability enhancement of pioglitazone using drug in adhesive transdermal patch. Pharmaceutics. 2019;11:359–73.

    CAS  PubMed Central  Google Scholar 

  36. Taghizadeh SM, Soroushnia A, Mohamadnia F. Preparation and in vitro evaluation of a new fentanyl patch based on functional and non-functional pressure sensitive adhesives. AAPS PharmSciTech. 2010;11:278–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu C, Quan P, Li SS, Zhao YS, Fang L. A systemic evaluation of drug in acrylic pressure sensitive adhesive patch in vitro and in vivo: the roles of intermolecular interaction and adhesive mobility variation in drug controlled release. J Control Release. 2017;252:83–94.

    CAS  PubMed  Google Scholar 

  38. Peng CC, Chauhan A. Ion transport in silicone hydrogel contact lenses. J Membrane Sci. 2012;399-400:95–105.

    CAS  Google Scholar 

  39. Stoughton RR, McClure WO. Azone®: a new non-toxic enhancer of cu’taneous penetration. Drug Dev Ind Pharm. 1983;9:725–44.

    CAS  Google Scholar 

  40. Chang L, Fan DD, Duan ZG, Jia LP, Zhu CH, Ma XX. The transdermal absorption study of human-like collagen. Adv Mater Res. 1781-1785;2012:415–7.

    Google Scholar 

  41. Haq A, Michniak-Kohn B. Effects of solvents and penetration enhancers on transdermal delivery of thymoquinone: permeability and skin deposition study. Drug Deliv. 2018;25:1943–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen Y, Quan P, Liu XC, Wang ML, Fang L. Novel chemical permeation enhancers for transdermal drug delivery. Asian J Pharm Sci. 2014;9:51–64.

    Google Scholar 

  43. Liu C, Fang L. Drug in adhesive patch of zolmitriptan: formulation and in vitro/in vivo correlation. AAPS PharmSciTech. 2015;16:1245–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. da Silva ER, de Freitas ZM, GitiranaLde B, Ricci-Júnior E. Improving the topical delivery of zinc phthalocyanine using oleic acid as a penetration enhancer: in vitro permeation and retention. Drug Dev Ind Pharm. 2011;37:569–75.

    PubMed  Google Scholar 

  45. Tuntiyasawasdikul S, Limpongsa E, Jaipakdee N, Sripanidkulchai B. Transdermal permeation of Kaempferia parviflora methoxyflavones from isopropyl myristate-based vehicles. AAPS PharmSciTech. 2014;15:947–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Jung E, Lee EY, Choi HK, Ban SJ, Choi SH, Kim JS, et al. Development of drug-in-adhesive patch formulations for transdermal delivery of fluoxetine: in vitro and in vivo evaluations. Int J Pharm. 2015;487:49–55.

    CAS  PubMed  Google Scholar 

  47. Barry BW. Mode of action of penetration enhancers in human skin. J Control Release. 1987;6:85–97.

    CAS  Google Scholar 

  48. Atef E, Altuwaijri N. Using raman spectroscopy in studying the effect of propylene glycol, oleic acid, and their combination on the rat skin. AAPS PharmSciTech. 2018;19:114–22.

    CAS  PubMed  Google Scholar 

  49. Khan MZU, Makreski P, Murtaza G. Preparation, optimization, in vitro evaluation and ex vivo permeation studies of rinasteride loaded gel formulations prepared by using response surface methodology. Curr Drug Deliv. 2018;15:1312–22.

    PubMed  Google Scholar 

  50. Diez-Sales O, Watkinson AC, M. Herraez-Dominguez M, Javaloyes C, Hadgraft J. A mechanistic investigation of the in vitro human skin permeation enhancing effect of Azone®. Int J Pharm. 1996;129:33–40.

    Google Scholar 

  51. Kim JH, Choi HK. Effect of additives on the crystallization and the permeation of ketoprofen from adhesive matrix. Int J Pharm. 2002;236:81–5.

    CAS  PubMed  Google Scholar 

  52. Jain P, Banga AK. Inhibition of crystallization in drug-in-adhesive-type transdermal patches. Int J Pharm. 2010;394:68–74.

    CAS  PubMed  Google Scholar 

  53. Jung E, Kang YP, Yoon IS, Kim JS, Kwon SW, Chung SJ, et al. Effect of permeation enhancers on transdermal delivery of fluoxetine: in vitro and in vivo evaluation. Int J Pharm. 2013;456:362–9.

    CAS  PubMed  Google Scholar 

  54. Bajpai AK, Shukla SK, Bhanu S, Kankane S. Responsive polymers in controlled drug delivery. Prog Polym Sci. 2008;33:1088–118.

    CAS  Google Scholar 

  55. de Velde F, de Winter BC, Koch BC, van Gelder T, Mouton JW. COMBACTE-NET consortium. Non-linear absorption pharmacokinetics of amoxicillin: consequences for dosing regimens and clinical breakpoints. J Antimicrob Chemother. 2016;71:2909–17.

    PubMed  Google Scholar 

  56. Yáñez JA, Remsberg CM, Sayre CL, Forrest ML, Davies NM. Flip-flop pharmacokinetics--delivering a reversal of disposition: challenges and opportunities during drug development. Ther Deliv. 2011;2:643–72.

    PubMed  Google Scholar 

  57. Zeng Q, Xie L, Zhang J, Vuong C, Potter B, Aylor S, et al. Improving relative bioavailability of oral imidazolidinedione by reducing particle size using homogenization and ultra-sonication. Mil Med. 2019;184:106–13.

    PubMed  Google Scholar 

Download references

Funding

The research was supported by the Industry-University-Research Cooperation Project of Fujian Province (grant number 2017Y4007), the Drug Innovation Major Project of China (grant number 2018ZX09711001-003-024), the Central Financial Support Universities Funds of China (grant number 2018L3008), and the Joint Funds for the Innovation of Science and Technology of Fujian Province (grant number 2018Y9074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changxi Yu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Lu, W., Fu, X. et al. Formulation and Pharmacokinetic Evaluation of a Drug-in-Adhesive Patch for Transdermal Delivery of Koumine. AAPS PharmSciTech 21, 297 (2020). https://doi.org/10.1208/s12249-020-01793-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01793-y

KEY WORDS

Navigation