Skip to main content

Advertisement

Log in

3D Printing Technologies: Recent Development and Emerging Applications in Various Drug Delivery Systems

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The 3D printing is considered as an emerging digitized technology that could act as a key driving factor for the future advancement and precise manufacturing of personalized dosage forms, regenerative medicine, prosthesis and implantable medical devices. Tailoring the size, shape and drug release profile from various drug delivery systems can be beneficial for special populations such as paediatrics, pregnant women and geriatrics with unique or changing medical needs. This review summarizes various types of 3D printing technologies with advantages and limitations particularly in the area of pharmaceutical research. The applications of 3D printing in tablets, films, liquids, gastroretentive, colon, transdermal and intrauterine drug delivery systems as well as medical devices have been briefed. Due to the novelty and distinct features, 3D printing has the inherent capacity to solve many formulation and drug delivery challenges, which are frequently associated with poorly aqueous soluble drugs. Recent approval of Spritam® and publication of USFDA technical guidance on additive manufacturing related to medical devices has led to an extensive research in various field of drug delivery systems and bioengineering. The 3D printing technology could be successfully implemented from pre-clinical phase to first-in-human trials as well as on-site production of customized formulation at the point of care having excellent dose flexibility. Advent of innovative 3D printing machineries with built-in flexibility and quality with the introduction of new regulatory guidelines would rapidly integrate and revolutionize conventional pharmaceutical manufacturing sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABS:

Acrylonitrile-butadiene-styrene

CAD:

Computer-aided design

DLP:

Digital light processing

DoD:

Drop-on-demand

EVA:

Ethylene vinyl acetate

FDM:

Fused deposition modelling

FFF:

Fused filament fabrication

HME:

Hot melt extrusion

HPMC:

Hydroxypropyl methylcellulose

PCL:

Poly(ε-caprolactone)

PLA:

Polylactic acid

PVA:

Polyvinyl acetate

SLS:

Selective laser sintering

SLA:

Stereolithography

UV-LED:

Ultraviolet light-emitting diode

US FDA:

United States Food and Drug Administration

USP:

United States Pharmacopoeia

References

  1. Choonara YE, du Toit LC, Kumar P, Kondiah PP, Pillay V. 3D-printing and the effect on medical costs: a new era? Expert Rev Pharmacoecon Outcomes Res. 2016;16(1):23–32.

    PubMed  Google Scholar 

  2. Menditto E, Orlando V, De Rosa G, Minghetti P, Musazzi UM, Cahir C, et al. Patient centric pharmaceutical drug product design-the impact on medication adherence. Pharmaceutics. 2020;12(1):44.

    CAS  PubMed Central  Google Scholar 

  3. Awad A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. Reshaping drug development using 3D printing. Drug Discov Today. 2018;23(8):1547–55.

    CAS  PubMed  Google Scholar 

  4. Matić J, Paudel A, Bauer H, Garcia RA, Biedrzycka K, Khinast JG. Developing HME-based drug products using emerging science: a fast-track roadmap from concept to clinical batch. AAPS PharmSciTech. 2020;21(5):1–8.

    Google Scholar 

  5. Trenfield SJ, Awad A, Goyanes A, Gaisford S, Basit AW. 3D printing pharmaceuticals: drug development to frontline care. Trends Pharmacol Sci. 2018;39(5):440–51.

    CAS  PubMed  Google Scholar 

  6. Prasad LK, Smyth H. 3D printing technologies for drug delivery: a review. Drug Dev Ind Pharm. 2016;42(7):1019–31.

    CAS  PubMed  Google Scholar 

  7. Trenfield SJ, Awad A, Madla CM, Hatton GB, Firth J, Goyanes A, et al. Shaping the future: recent advances of 3D printing in drug delivery and healthcare. Expert Opin Drug Deliv. 2019;16(10):1081–94.

    CAS  PubMed  Google Scholar 

  8. Dimitrov D, Schreve K, de Beer N. Advances in three dimensional printing–state of the art and future perspectives. Rapid Prototyp J. 2006;12:136–47.

    Google Scholar 

  9. Mathew E, Pitzanti G, Larrañeta E, Lamprou DA. 3D printing of pharmaceuticals and drug delivery devices. Pharmaceutics. 2020;12(3):266.

    CAS  PubMed Central  Google Scholar 

  10. Wickström H, Koppolu R, Mäkilä E, Toivakka M, Sandler N. Stencil printing—a novel manufacturing platform for orodispersible discs. Pharmaceutics. 2020;12(1):33.

    PubMed Central  Google Scholar 

  11. Rycerz K, Stepien KA, Czapiewska M, Arafat BT, Habashy R, Isreb A, et al. Embedded 3D printing of novel bespoke soft dosage form concept for pediatrics. Pharmaceutics. 2019;11(12):630.

    CAS  PubMed Central  Google Scholar 

  12. Boehm RD, Miller PR, Daniels J, Stafslien S, Narayan RJ. Inkjet printing for pharmaceutical applications. Mater Today. 2014;17(5):247–52.

    CAS  Google Scholar 

  13. Cader HK, Rance GA, Alexander MR, Gonçalves AD, Roberts CJ, Tuck CJ, et al. Water-based 3D inkjet printing of an oral pharmaceutical dosage form. Int J Pharm. 2019;564:359–68.

    CAS  PubMed  Google Scholar 

  14. Sandler N, Määttänen A, Ihalainen P, Kronberg L, Meierjohann A, Viitala T, et al. Inkjet printing of drug substances and use of porous substrates-towards individualized dosing. J Pharm Sci. 2011;100(8):3386–95.

    CAS  PubMed  Google Scholar 

  15. Park BJ, Choi HJ, Moon SJ, Kim SJ, Bajracharya R, Min JY, et al. Pharmaceutical applications of 3D printing technology: current understanding and future perspectives. J Pharm Investig. 2019;49(6):575–85.

    Google Scholar 

  16. Schmidt M, Pohle D, Rechtenwald T. Selective laser sintering of PEEK. CIRP Ann. 2007;56(1):205–8.

    Google Scholar 

  17. Goyanes A, Buanz AB, Basit AW, Gaisford S. Fused-filament 3D printing (3DP) for fabrication of tablets. Int J Pharm. 2014;476(1–2):88–92.

    CAS  PubMed  Google Scholar 

  18. Ghilan A, Chiriac AP, Nita LE, Rusu AG, Neamtu I, Chiriac VM. Trends in 3D printing processes for biomedical field: opportunities and challenges. J Polym Environ. 2020;28(5):1345–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Madzarevic M, Medarevic D, Vulovic A, Sustersic T, Djuris J, Filipovic N, et al. Optimization and prediction of ibuprofen release from 3D DLP printlets using artificial neural networks. Pharmaceutics. 2019;11(10):544.

    CAS  PubMed Central  Google Scholar 

  20. Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9(1):4.

    PubMed  PubMed Central  Google Scholar 

  21. Chimate C, Koc B. Pressure assisted multi-syringe single nozzle deposition system for manufacturing of heterogeneous tissue scaffolds. Int J Adv Manuf Technol. 2014;75(1–4):317–30.

    Google Scholar 

  22. Jamróz W, Szafraniec J, Kurek M, Jachowicz R. 3D printing in pharmaceutical and medical applications - recent achievements and challenges. Pharm Res. 2018;35(9):176.

    PubMed  PubMed Central  Google Scholar 

  23. Alhnan MA, Okwuosa TC, Sadia M, Wan KW, Ahmed W, Arafat B. Emergence of 3D printed dosage forms: opportunities and challenges. Pharm Res. 2016;33(8):1817–32.

    CAS  PubMed  Google Scholar 

  24. Zhou Z, Buchanan F, Mitchell C, Dunne N. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Mater Sci Eng C. 2014;38:1–10.

    CAS  Google Scholar 

  25. Rowe CW, Wang CC, Monkhouse DC. TheriForm technology. In: Rathbone, Hadgraft, Roberts, editors. Modified-release drug delivery technology, drugs and pharmaceutical sciences, volume 126; 2000.

    Google Scholar 

  26. Norman J, Madurawe RD, Moore CM, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev. 2017;108:39–50.

    CAS  PubMed  Google Scholar 

  27. Genina N, Holländer J, Jukarainen H, Mäkilä E, Salonen J, Sandler N. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices. Eur J Pharm Sci. 2016;90:53–63.

    CAS  PubMed  Google Scholar 

  28. Melocchi A, Parietti F, Maroni A, Foppoli A, Gazzaniga A, Zema L. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. Int J Pharm. 2016;509(1–2):255–63.

    CAS  PubMed  Google Scholar 

  29. Tan D, Maniruzzaman M, Nokhodchi A. Advanced pharmaceutical applications of hot-melt extrusion coupled with fused deposition Modelling (FDM) 3D printing for personalised drug delivery. Pharmaceutics. 2018;10(4):203.

    CAS  PubMed Central  Google Scholar 

  30. Feuerbach T, Kock S, Thommes M. Characterisation of fused deposition modeling 3D printers for pharmaceutical and medical applications. Pharm Dev Technol. 2018;23:1136–45.

    CAS  PubMed  Google Scholar 

  31. Lamichhane S, Bashyal S, Keum T, Noh G, Seo JE, Bastola R, et al. Complex formulations, simple techniques: can 3D printing technology be the Midas touch in pharmaceutical industry? Asian J Pharm Sci. 2019;14(5):465–79.

    PubMed  PubMed Central  Google Scholar 

  32. Han D, Lu Z, Chester SA, Lee H. Micro 3D printing of a temperature-responsive hydrogel using projection micro-stereolithography. Sci Rep. 2018;8(1):1–10.

    Google Scholar 

  33. Holländer J, Hakala R, Suominen J, Moritz N, Yliruusi J, Sandler N. 3D printed UV light cured polydimethylsiloxane devices for drug delivery. Int J Pharm. 2018;544(2):433–42.

    PubMed  Google Scholar 

  34. Okwuosa TC, Pereira BC, Arafat B, Cieszynska M, Isreb A, Alhnan MA. Fabricating a shell-core delayed release tablet using dual FDM 3D printing for patient-centred therapy. Pharm Res. 2017;34(2):427–37.

    CAS  PubMed  Google Scholar 

  35. Maroni A, Melocchi A, Parietti F, Foppoli A, Zema L, Gazzaniga A. 3D printed multi-compartment capsular devices for two-pulse oral drug delivery. J Control Release. 2017;268:10–8.

    CAS  PubMed  Google Scholar 

  36. Jain A, Bansal KK, Tiwari A, Rosling A, Rosenholm JM. Role of polymers in 3D printing technology for drug delivery—an overview. Curr Pharm Des. 2018;24(42):4979–90.

    CAS  PubMed  Google Scholar 

  37. Genina N, Boetker JP, Colombo S, Harmankaya N, Rantanen J, Bohr A. Anti-tuberculosis drug combination for controlled oral delivery using 3D printed compartmental dosage forms: from drug product design to in vivo testing. J Control Release. 2017;268:40–8.

    CAS  PubMed  Google Scholar 

  38. Vaezi M, Seitz H, Yang S. A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Technol. 2013;67(5–8):1721–54.

    Google Scholar 

  39. Tsai YC, Li S, Hu SG, Chang WC, Jeng US, Hsu SH. Synthesis of thermoresponsive amphiphilic polyurethane gel as a new cell printing material near body temperature. ACS Appl Mater Interfaces. 2015;7(50):27613–23.

    CAS  PubMed  Google Scholar 

  40. Do AV, Akkouch A, Green B, Ozbolat I, Debabneh A, Geary S, et al. Controlled and sequential delivery of fluorophores from 3D printed alginate-PLGA tubes. Ann Biomed Eng. 2017;45(1):297–305.

    PubMed  Google Scholar 

  41. Kempin W, Franz C, Koster LC, Schneider F, Bogdahn M, Weitschies W, et al. Assessment of different polymers and drug loads for fused deposition modeling of drug loaded implants. Eur J Pharm Biopharm. 2017;115:84–93.

    CAS  PubMed  Google Scholar 

  42. Beck RC, Chaves PS, Goyanes A, Vukosavljevic B, Buanz A, Windbergs M, et al. 3D printed tablets loaded with polymeric nanocapsules: an innovative approach to produce customized drug delivery systems. Int J Pharm. 2017;528(1–2):268–79.

    CAS  PubMed  Google Scholar 

  43. Martinez PR, Goyanes A, Basit AW, Gaisford S. Fabrication of drug-loaded hydrogels with stereolithographic 3D printing. Int J Pharm. 2017;532(1):313–7.

    CAS  PubMed  Google Scholar 

  44. Kondiah PJ, Kondiah PPD, Choonara YE, Marimuthu T, Pillay V. A 3D bioprinted pseudo-bone drug delivery scaffold for bone tissue engineering. Pharmaceutics. 2020;12(2):166.

    CAS  PubMed Central  Google Scholar 

  45. Kollamaram G, Croker DM, Walker GM, Goyanes A, Basit AW, Gaisford S. Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. Int J Pharm. 2018;545(1–2):144–52.

    CAS  PubMed  Google Scholar 

  46. Preis M, Rosenholm JM. Printable nanomedicines: the future of customized drug delivery? Ther Deliv. 2017;8(9):721–3.

    CAS  PubMed  Google Scholar 

  47. Katstra WE, Palazzolo RD, Rowe CW, Giritlioglu B, Teung P, Cima MJ. Oral dosage forms fabricated by three dimensional printing™. J Control Release. 2000;66(1):1–9.

    CAS  PubMed  Google Scholar 

  48. Alomari M, Mohamed FH, Basit AW, Gaisford S. Personalised dosing: printing a dose of one's own medicine. Int J Pharm. 2015;494(2):568–77.

    CAS  PubMed  Google Scholar 

  49. Azad MA, Olawuni D, Kimbell G, Badruddoza AZM, Hossain MS, Sultana T. Polymers for extrusion-based 3D printing of pharmaceuticals: a holistic materials-process perspective. Pharmaceutics. 2020;12(2):124.

    CAS  PubMed Central  Google Scholar 

  50. Pandey M, Choudhury H, Fern JL, Kee AT, Kou J, Jing JL, et al. 3D printing for oral drug delivery: a new tool to customize drug delivery. Drug Deliv Transl Res. 2020;10(4):986–1001.

    CAS  PubMed  Google Scholar 

  51. Pietrzak K, Isreb A, Alhnan MA. A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur J Pharm Biopharm. 2015;96:380–7.

    CAS  PubMed  Google Scholar 

  52. Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem. 2014;86(7):3240–53.

    CAS  PubMed  Google Scholar 

  53. Jacob J, Coyle N, West TG, Monkhouse DC, Surprenant HL, Jain NB, inventors; Aprecia Pharmaceuticals Co, assignee. Rapid disperse dosage form containing levetiracetam. United States patent US 9,339,489. 2016.

  54. Jamróz W, Kurek M, Czech A, Szafraniec J, Gawlak K, Jachowicz R. 3D printing of tablets containing amorphous aripiprazole by filaments co-extrusion. Eur J Pharm Biopharm. 2018;131:44–7.

    PubMed  Google Scholar 

  55. Arafat B, Wojsz M, Isreb A, Forbes RT, Isreb M, Ahmed W, et al. Tablet fragmentation without a disintegrant: a novel design approach for accelerating disintegration and drug release from 3D printed cellulosic tablets. Eur J Pharm Sci. 2018;118:191–9.

    CAS  PubMed  Google Scholar 

  56. Macchi E, Zema L, Maroni A, Gazzaniga A, Felton LA. Enteric-coating of pulsatile-release HPC capsules prepared by injection molding. Eur J Pharm Sci. 2015;70:1–11.

    CAS  PubMed  Google Scholar 

  57. Conceição J, Farto-Vaamonde X, Goyanes A, Adeoye O, Concheiro A, Cabral-Marques H, et al. Hydroxypropyl-β-cyclodextrin-based fast dissolving carbamazepine printlets prepared by semisolid extrusion 3D printing. Carbohydr Polym. 2019;221:55–62.

    PubMed  Google Scholar 

  58. Krkobabić M, Medarević D, Cvijić S, Grujić B, Ibrić S. Hydrophilic excipients in digital light processing (DLP) printing of sustained release tablets: impact on internal structure and drug dissolution rate. Int J Pharm. 2019;118790.

  59. Kadry H, Wadnap S, Xu C, Ahsan F. Digital light processing (DLP) 3D-printing technology and photoreactive polymers in fabrication of modified-release tablets. Eur J Pharm Sci. 2019;135:60–7.

    CAS  PubMed  Google Scholar 

  60. Fuenmayor E, Forde M, Healy AV, Devine DM, Lyons JG, McConville C, et al. Comparison of fused-filament fabrication to direct compression and injection molding in the manufacture of oral tablets. Int J Pharm. 2019;558:328–40.

    CAS  PubMed  Google Scholar 

  61. Yu DG, Shen XX, Branford-White C, Zhu LM, White K, Yang XL. Novel oral fast-disintegrating drug delivery devices with predefined inner structure fabricated by three-dimensional printing. J Pharm Pharmacol. 2009;61(3):323–9.

    CAS  PubMed  Google Scholar 

  62. Li P, Jia H, Zhang S, Yang Y, Sun H, Wang H, et al. Thermal extrusion 3D printing for the fabrication of puerarin immediate-release tablets. AAPS PharmSciTech. 2020;21(1):20.

    Google Scholar 

  63. Jamróz W, Kurek M, Szafraniec-Szczęsny J, Czech A, Gawlak K, Knapik-Kowalczuk J, et al. Speed it up, slow it down… an issue of bicalutamide release from 3D printed tablets. Eur J Pharm Sci. 2020;143:105169.

    PubMed  Google Scholar 

  64. Korte C, Quodbach J. Formulation development and process analysis of drug-loaded filaments manufactured via hot-melt extrusion for 3D-printing of medicines. Pharm Dev Technol. 2018;23(10):1117–27.

    CAS  PubMed  Google Scholar 

  65. Skowyra J, Pietrzak K, Alhnan MA. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur J Pharm Sci. 2015;20(68):11–7.

    Google Scholar 

  66. Chen D, Xu XY, Li R, Zang GA, Zhang Y, Wang MR, et al. Preparation and in vitro evaluation of FDM 3D-printed ellipsoid-shaped gastric floating tablets with low infill percentages. AAPS PharmSciTech. 2020;21(1):6.

    CAS  Google Scholar 

  67. Charoenying T, Patrojanasophon P, Ngawhirunpat T, Rojanarata T, Akkaramongkolporn P, Opanasopit P. Fabrication of floating capsule-in-3D-printed devices as gastro-retentive delivery systems of amoxicillin. J Drug Deliv Sci Technol. 2020;55:101393.

    CAS  Google Scholar 

  68. Wang CC, Tejwani MR, Roach WJ, Kay JL, Yoo J, Surprenant HL, et al. Development of near zero-order release dosage forms using three-dimensional printing (3-DP™) technology. Drug Dev Ind Pharm. 2006;32(3):367–76.

    CAS  PubMed  Google Scholar 

  69. Tan DK, Maniruzzaman M, Nokhodchi A. Development and optimisation of novel polymeric compositions for sustained release theophylline caplets (PrintCap) via FDM 3D printing. Polymers. 2020;12(1):27.

    CAS  Google Scholar 

  70. Goyanes A, Chang H, Sedough D, Hatton GB, Wang J, Buanz A, et al. Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int J Pharm. 2015;496(2):414–20.

    CAS  PubMed  Google Scholar 

  71. Wu W, Zheng Q, Guo X, Sun J, Liu Y. A programmed release multi-drug implant fabricated by three-dimensional printing technology for bone tuberculosis therapy. Biomed Mater. 2009;4(6):065005.

    PubMed  Google Scholar 

  72. Bayon Y, Ladet S, Lefranc O, Gravagna P, inventors; Sofradim Production SASU, assignee. Medical implant including a 3D mesh of oxidized cellulose and a collagen sponge. United States patent US 9,119,898. 2015.

  73. Wang Y, Sun L, Mei Z, Zhang F, He M, Fletcher C, et al. 3D printed biodegradable implants as an individualized drug delivery system for local chemotherapy of osteosarcoma. Mater Des. 2020;186:108336.

    CAS  Google Scholar 

  74. Huang W, Zheng Q, Sun W, Xu H, Yang X. Levofloxacin implants with predefined microstructure fabricated by three-dimensional printing technique. Int J Pharm. 2007;339(1–2):33–8.

    CAS  PubMed  Google Scholar 

  75. Wu G, Wu W, Zheng Q, Li J, Zhou J, Hu Z. Experimental study of PLLA/INH slow release implant fabricated by three dimensional printing technique and drug release characteristics in vitro. Biomed Eng Online. 2014;13(1):97.

    PubMed  PubMed Central  Google Scholar 

  76. Lin S, Chao PY, Chien YW, Sayani A, Kumar S, Mason M, et al. In vitro and in vivo evaluations of biodegradable implants for hormone replacement therapy: effect of system design and PK-PD relationship. AAPS PharmSciTech. 2001;2(3):55–65.

    PubMed Central  Google Scholar 

  77. Goyanes A, Det-Amornrat U, Wang J, Basit AW, Gaisford S. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release. 2016;234:41–8.

    CAS  PubMed  Google Scholar 

  78. Muwaffak Z, Goyanes A, Clark V, Basit AW, Hilton ST, Gaisford S. Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int J Pharm. 2017;527(1–2):161–70.

    CAS  PubMed  Google Scholar 

  79. Liang K, Carmone S, Brambilla D, Leroux JC. 3D printing of a wearable personalized oral delivery device: a first-in-human study. Sci Adv. 2018;4(5):eaat2544.

    PubMed  PubMed Central  Google Scholar 

  80. Okwuosa TC, Soares C, Gollwitzer V, Habashy R, Timmins P, Alhnan MA. On demand manufacturing of patient-specific liquid capsules via co-ordinated 3D printing and liquid dispensing. Eur J Pharm Sci. 2018;118:134–43.

    CAS  PubMed  Google Scholar 

  81. Smith DM, Kapoor Y, Klinzing GR, Procopio AT. Pharmaceutical 3D printing: design and qualification of a single step print and fill capsule. Int J Pharm. 2018;544(1):21–30.

    CAS  PubMed  Google Scholar 

  82. Zidan A, Alayoubi A, Coburn J, Asfari S, Ghammraoui B, Cruz CN, et al. Extrudability analysis of drug loaded pastes for 3D printing of modified release tablets. Int J Pharm. 2019;554:292–301.

    CAS  PubMed  Google Scholar 

  83. Khaled SA, Burley JC, Alexander MR, Roberts CJ. Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int J Pharm. 2014;461(1–2):105–11.

    CAS  PubMed  Google Scholar 

  84. Elbl J, Gajdziok J, Kolarczyk J. 3D printing of multilayered orodispersible films with in-process drying. Int J Pharm. 2020;575:118883.

    CAS  PubMed  Google Scholar 

  85. Ehtezazi T, Algellay M, Islam Y, Roberts M, Dempster NM, Sarker SD. The application of 3D printing in the formulation of multilayered fast dissolving oral films. J Pharm Sci. 2018;107(4):1076–85.

    CAS  PubMed  Google Scholar 

  86. Musazzi UM, Selmin F, Ortenzi MA, Mohammed GK, Franzé S, Minghetti P, et al. Personalized orodispersible films by hot melt ram extrusion 3D printing. Int J Pharm. 2018;551(1–2):52–9.

    CAS  PubMed  Google Scholar 

  87. Vuddanda PR, Alomari M, Dodoo CC, Trenfield SJ, Velaga S, Basit AW, et al. Personalisation of warfarin therapy using thermal ink-jet printing. Eur J Pharm Sci. 2018;117:80–7.

    CAS  PubMed  Google Scholar 

  88. Goole J, Amighi K. 3D printing in pharmaceutics: a new tool for designing customized drug delivery systems. Int J Pharm. 2016;499(1–2):376–94.

    PubMed  Google Scholar 

  89. Kotta S, Nair A, Alsabeelah N. 3D printing technology in drug delivery: recent progress and application. Curr Pharm Des. 2018;24(42):5039–48.

    CAS  PubMed  Google Scholar 

  90. Fu J, Yin H, Yu X, Xie C, Jiang H, Jin Y, et al. Combination of 3D printing technologies and compressed tablets for preparation of riboflavin floating tablet-in-device (TiD) systems. Int J Pharm. 2018;549(1–2):370–9.

    CAS  PubMed  Google Scholar 

  91. Reddy Dumpa N, Bandari S, Repka MA. Novel gastroretentive floating pulsatile drug delivery system produced via hot-melt extrusion and fused deposition modeling 3D printing. Pharmaceutics. 2020;12(1):52.

    PubMed Central  Google Scholar 

  92. Kimura SI, Ishikawa T, Iwao Y, Itai S, Kondo H. Fabrication of zero-order sustained-release floating tablets via fused depositing modeling 3d printer. Chem Pharm Bull (Tokyo). 2019;67(9):992–9.

    CAS  Google Scholar 

  93. Giri BR, Song ES, Kwon J, Lee JH, Park JB, Kim DW. Fabrication of intragastric floating, controlled release 3D printed theophylline tablets using hot-melt extrusion and fused deposition modeling. Pharmaceutics. 2020;12(1):77.

    CAS  PubMed Central  Google Scholar 

  94. Lamichhane S, Park JB, Sohn DH, Lee S. Customized novel design of 3D printed pregabalin tablets for intra-gastric floating and controlled release using fused deposition modeling. Pharmaceutics. 2019;11(11):564.

    CAS  PubMed Central  Google Scholar 

  95. Charbe NB, McCarron PA, Lane ME, Tambuwala MM. Application of three-dimensional printing for colon targeted drug delivery systems. Int J Pharm Investig. 2017;7(2):47–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Goyanes A, Buanz AB, Hatton GB, Gaisford S, Basit AW. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm. 2015;89:157–62.

    CAS  PubMed  Google Scholar 

  97. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm. 2015;494:643–50.

    CAS  PubMed  Google Scholar 

  98. Fu J, Yu X, Jin Y. 3D printing of vaginal rings with personalized shapes for controlled release of progesterone. Int J Pharm. 2018;539(1–2):75–82.

    CAS  PubMed  Google Scholar 

  99. Nair A, Jacob S, Al-Dhubiab B, Attimarad M, Harsha S. Basic considerations in the dermatokinetics of topical formulations. Braz J Pharm Sci. 2013;49(3):423–34.

    CAS  Google Scholar 

  100. Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Deliv Rev. 2004;56(5):581–7.

    CAS  PubMed  Google Scholar 

  101. Ross S, Scoutaris N, Lamprou D, Mallinson D, Douroumis D. Inkjet printing of insulin microneedles for transdermal delivery. Drug Deliv Transl Res. 2015;5(4):451–61.

    CAS  PubMed  Google Scholar 

  102. Uddin MJ, Scoutaris N, Klepetsanis P, Chowdhry B, Prausnitz MR, Douroumis D. Inkjet printing of transdermal microneedles for the delivery of anticancer agents. Int J Pharm. 2015;494(2):593–602.

    CAS  PubMed  Google Scholar 

  103. Allen EA, O’Mahony C, Cronin M, O’Mahony T, Moore AC, Crean AM. Dissolvable microneedle fabrication using piezoelectric dispensing technology. Int J Pharm. 2016;500(1–2):1–10.

    CAS  PubMed  Google Scholar 

  104. Boehm RD, Miller PR, Schell WA, Perfect JR, Narayan RJ. Inkjet printing of amphotericin B onto biodegradable microneedles using piezoelectric inkjet printing. Jom. 2013;65(4):525–33.

    CAS  Google Scholar 

  105. Ali Z, Türeyen EB, Karpat Y, Çakmakcı M. Fabrication of polymer micro needles for transdermal drug delivery system using DLP based projection stereo-lithography. Procedia CIRP. 2016;42:87–90.

    Google Scholar 

  106. Kavaldzhiev M, Perez JE, Ivanov Y, Bertoncini A, Liberale C, Kosel J. Biocompatible 3D printed magnetic micro needles. Biomed Phys Eng Express. 2017;3(2):025005.

    Google Scholar 

  107. Bracaglia LG, Messina M, Winston S, Kuo CY, Lerman M, Fisher JP. 3D printed pericardium hydrogels to promote wound healing in vascular applications. Biomacromolecules. 2017;18(11):3802–11.

    CAS  PubMed  Google Scholar 

  108. Herbert N, Simpson D, Spence WD, Ion W. A preliminary investigation into the development of 3-D printing of prosthetic sockets. J Rehabil Res Dev. 2005;42(2):141–6.

    PubMed  Google Scholar 

  109. Zuniga J, Katsavelis D, Peck J, Stollberg J, Petrykowski M, Carson A, et al. Cyborg beast: a low-cost 3d-printed prosthetic hand for children with upper-limb differences. BMC Res Notes. 2015;8:10.

    PubMed  PubMed Central  Google Scholar 

  110. Lee JS, Hong JM, Jung JW, Shim JH, Oh JH, Cho DW. 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication. 2014;6(2):024103.

    PubMed  Google Scholar 

  111. He Y, Xue GH, Fu JZ. Fabrication of low cost soft tissue prostheses with the desktop 3D printer. Sci Rep. 2014;4(1):1–7.

    Google Scholar 

  112. Unkovskiy A, Spintzyk S, Brom J, Huettig F, Keutel C. Direct 3D printing of silicone facial prostheses: a preliminary experience in digital workflow. J Prosthet Dent. 2018;120(2):303–8.

    CAS  PubMed  Google Scholar 

  113. Alonso M, Guerrero-Beltrán CE, Ortega-Lara W. Design and characterization of gelatin/PVA hydrogels reinforced with ceramics for 3D printed prosthesis. Mater Today: Proceedings. 2019;13:324–31.

    CAS  Google Scholar 

  114. Shi W, Sun M, Hu X, Ren B, Cheng J, Li C, et al. Structurally and functionally optimized silk-fibroin–gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo. Adv Mater. 2017;29(29):1701089.

    Google Scholar 

  115. Nowicki MA, Castro NJ, Plesniak MW, Zhang LG. 3D printing of novel osteochondral scaffolds with graded microstructure. Nanotechnology. 2016;27(41):414001.

    PubMed  Google Scholar 

  116. Keriquel V, Oliveira H, Rémy M, Ziane S, Delmond S, Rousseau B, et al. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci Rep. 2017;7(1):1778.

    PubMed  PubMed Central  Google Scholar 

  117. Hung KC, Tseng CS, Dai LG, Hsu SH. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering. Biomaterials. 2016;83:156–68.

    CAS  PubMed  Google Scholar 

  118. Schmauss D, Juchem G, Weber S, Gerber N, Hagl C, Sodian R. Three-dimensional printing for perioperative planning of complex aortic arch surgery. Ann Thorac Surg. 2014;97(6):2160–3.

    PubMed  Google Scholar 

  119. Tsai KY, Lin HY, Chen YW, Lin CY, Hsu TT, Kao CT. Laser sintered magnesium-calcium silicate/poly-ε-caprolactone scaffold for bone tissue engineering. Materials. 2017;10(1):65.

    PubMed Central  Google Scholar 

  120. Lin YM, Chen H, Lin CH, Huang PJ, Lee SY. Development of polycaprolactone/hydroxyapatite composite resin for 405 nm digital light projection 3D printing. Rapid Prototyp J. 2020; In press;26:951–8. https://doi.org/10.1108/RPJ-06-2019-0166.

    Article  Google Scholar 

  121. Xue C, Xu H, Guo Y, Xu L, Dhami Y, Wang H, et al. Accurate bracket placement using a computer-aided design and computer-aided manufacturing–guided bonding device: an in vivo study. Am J Orthod Dentofac Orthop. 2020;157(2):269–77.

    Google Scholar 

  122. Zopf DA, Hollister SJ, Nelson ME, Ohye RG, Green GE. Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med. 2013;368:2043–5.

    CAS  PubMed  Google Scholar 

  123. Ma L, Zhou Y, Zhu Y, Lin Z, Chen L, Zhang Y, et al. 3D printed personalized titanium plates improve clinical outcome in microwave ablation of bone tumors around the knee. Sci Rep. 2017;7(1):1–10.

    Google Scholar 

  124. Dzian A, Živčák J, Penciak R, Hudák R. Implantation of a 3D-printed titanium sternum in a patient with a sternal tumor. World J Surg Oncol. 2018;16(1):7.

    PubMed  PubMed Central  Google Scholar 

  125. Zhong N, Zhao X. 3D printing for clinical application in otorhinolaryngology. Eur Arch Otorhinolaryngol. 2017;274(12):4079–89.

    PubMed  Google Scholar 

  126. Liu D, Fu J, Fan H, Li D, Dong E, Xiao X, et al. Application of 3D-printed PEEK scapula prosthesis in the treatment of scapular benign fibrous histiocytoma: a case report. J Bone Oncol. 2018;12:78–82.

    PubMed  PubMed Central  Google Scholar 

  127. Hikita A, Chung UI, Hoshi K, Takato T. Bone regenerative medicine in oral and maxillofacial region using a three-dimensional printer. Tissue Eng Part A. 2017;23(11–12):515–21.

    PubMed  Google Scholar 

  128. Oberoi G, Nitsch S, Edelmayer M, Janjić K, Müller AS, Agis H. 3D printing—encompassing the facets of dentistry. Front Bioeng Biotech. 2018;6:172.

    Google Scholar 

  129. Ventola CL. Medical applications for 3D printing: current and projected uses. P T. 2014;39(10):704–11.

    PubMed  PubMed Central  Google Scholar 

  130. Goyanes A, Scarpa M, Kamlow M, Gaisford S, Basit AW, Orlu M. Patient acceptability of 3D printed medicines. Int J Pharm. 2017;530(1–2):71–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shery Jacob.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacob, S., Nair, A.B., Patel, V. et al. 3D Printing Technologies: Recent Development and Emerging Applications in Various Drug Delivery Systems. AAPS PharmSciTech 21, 220 (2020). https://doi.org/10.1208/s12249-020-01771-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01771-4

KEY WORDS

Navigation