Skip to main content

Advertisement

Log in

Spray-Dried Rosuvastatin Nanoparticles for Promoting Hair Growth

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In this research, we examined the effect of rosuvastatin calcium-loaded nanoparticles on the hair growth–promoting activity on Albino rats. Nanoparticles were prepared using 2:1 weight ratio of drug to methyl-β-cyclodextrin with 10, 20, and 30% stabilizers (phospholipid, polyvinyl pyrrolidone K30, and Compritol 888 ATO) using nanospray dryer. Subsequently, the prepared nanoparticles were evaluated for their process yield, particle size, polydispersity index, zeta potential, and in vitro drug release as well as in vivo studies. The dried nanoparticles showed process yield values up to 84% with particle size values ranging from 218 to 6258 nm, polydispersity index values ranging from 0.32 to 0.99, and zeta potential values ranging from − 6.1 to − 11.9 mV. Combination of methyl-β-cyclodextrin with 10% polyvinyl pyrrolidone K30 accomplished nanoparticles with the lowest particle size (218 nm) and polydispersity index (0.32) values. These nanoparticles had suitable process yield value (70.5%) and were able to retard drug release. The hair growth–promoting activity for the selected nanoparticles revealed the highest hair length values in Albino rats after 14 days of the hair growth study compared with non-medicated nanoparticles, nanoparticles’ physical mixture, rosuvastatin solution, and marketed minoxidil preparation groups as well as the control group. The immunohistochemistry images for both selected nanoparticles and marketed minoxidil groups showed a significant increase in the diameter of hair follicle and percent area fraction of cytokeratin 19 in the outer root sheath of hair follicle compared with other tested groups. Rosuvastatin nanoparticles prepared by nanospray drying technique could be a good competitor to minoxidil for hair growth–promoting activity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Datta K, Singh AT, Mukherjee A, Bhat B, Ramesh B, Burman AC. Eclipta alba extract with potential for hair growth promoting activity. J Ethnopharmacol. 2009;124(3):450–6.

    PubMed  Google Scholar 

  2. Veijouye SJ, Abazar Y, Heidari F, Sajedi N, Moghani FG, Nobakht M. Bulge region as a putative hair follicle stem cells niche: a brief review. Iran J Public Health. 2017;46(9):1167.

    Google Scholar 

  3. Paus R, Cotsarelis G. The biology of hair follicles. N Engl J Med. 1999;341(7):491–7.

    CAS  PubMed  Google Scholar 

  4. Alonso L, Fuchs E. The hair cycle. J Cell Sci. 2006;119(3):391–3.

    CAS  PubMed  Google Scholar 

  5. Hadshiew IM, Foitzik K, Arck PC, Paus R. Burden of hair loss: stress and the underestimated psychosocial impact of telogen effluvium and androgenetic alopecia. J Invest Dermatol. 2004;123(3):455–7.

    CAS  PubMed  Google Scholar 

  6. Malkud S. Telogen effluvium: a review. J Clin Diagn Res. 2015;9(9):WE01–3.

    PubMed  PubMed Central  Google Scholar 

  7. Tosti A, Misciali C, Piraccini BM, Peluso AM, Bardazzi F. Drug-induced hair loss and hair growth. Drug Saf. 1994;10(4):310–7.

    CAS  Google Scholar 

  8. Sica DA. Minoxidil: an underused vasodilator for resistant or severe hypertension. J Clin Hypertens. 2004;6(5):283–7.

    Google Scholar 

  9. Messenger A, Rundegren J. Minoxidil: mechanisms of action on hair growth. Br J Dermatol. 2004;150(2):186–94.

    CAS  PubMed  Google Scholar 

  10. Blume-Peytavi U, Hillmann K, Dietz E, Canfield D, Bartels NG. A randomized, single-blind trial of 5% minoxidil foam once daily versus 2% minoxidil solution twice daily in the treatment of androgenetic alopecia in women. J Am Acad Dermatol. 2011;65(6):1126–34. e2.

    CAS  PubMed  Google Scholar 

  11. Sinclair R. Treatment of monilethrix with oral minoxidil. JAAD Case Rep. 2016;2(3):212–5.

    PubMed  PubMed Central  Google Scholar 

  12. Evers BM, Farooqi MS, Shelton JM, Richardson JA, Goldstein JL, Brown MS, et al. Hair growth defects in insig-deficient mice caused by cholesterol precursor accumulation and reversed by simvastatin. J Invest Dermatol. 2010;130(5):1237–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. McTaggart F, Buckett L, Davidson R, Holdgate G, McCormick A, Schneck D, et al. Preclinical and clinical pharmacology of rosuvastatin, a new 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor. Am J Cardiol. 2001;87(5):28–32.

    Google Scholar 

  14. Salih OS, Samein LH, Ali WK. Formulation and in vitro evaluation of rosuvastatin calcium niosomes. Int J Pharm Pharm Sci. 2013;5(4):525–35.

    CAS  Google Scholar 

  15. Raj R, Mongia P, Ram A, Jain N. Enhanced skin delivery of aceclofenac via hydrogel-based solid lipid nanoparticles. Artif Cells Nanomed Biotechnol. 2016;44(6):1434–9.

    CAS  PubMed  Google Scholar 

  16. Carter P, Narasimhan B, Wang Q. Biocompatible nanoparticles and vesicular systems in transdermal drug delivery for various skin diseases. Int J Pharm. 2019;555:49–62.

    CAS  PubMed  Google Scholar 

  17. Ghanbarzadeh S, Hariri R, Kouhsoltani M, Shokri J, Javadzadeh Y, Hamishehkar H. Enhanced stability and dermal delivery of hydroquinone using solid lipid nanoparticles. Colloids Surf B: Biointerfaces. 2015;136:1004–10.

    CAS  PubMed  Google Scholar 

  18. Nafisi S, Samadi N, Houshiar M, Maibach HI. Mesoporous silica nanoparticles for enhanced lidocaine skin delivery. Int J Pharm. 2018;550(1–2):325–32.

    CAS  PubMed  Google Scholar 

  19. Safwat MA, Soliman GM, Sayed D, Attia MA. Fluorouracil-loaded gold nanoparticles for the treatment of skin cancer: development, in vitro characterization, and in vivo evaluation in a mouse skin cancer xenograft model. Mol Pharm. 2018;15(6):2194–205.

    CAS  PubMed  Google Scholar 

  20. Maged A, Abdelkhalek AA, Mahmoud AA, Salah S, Ammar MM, Ghorab MM. Mesenchymal stem cells associated with chitosan scaffolds loaded with rosuvastatin to improve wound healing. Eur J Pharm Sci. 2019;127:185–98.

    CAS  PubMed  Google Scholar 

  21. Kumar N, Rungseevijitprapa W, Narkkhong N-A, Suttajit M, Chaiyasut C. 5α-reductase inhibition and hair growth promotion of some Thai plants traditionally used for hair treatment. J Ethnopharmacol. 2012;139(3):765–71.

    PubMed  Google Scholar 

  22. Maged A, Mahmoud AA, Ghorab MM. Nano spray drying technique as a novel approach to formulate stable econazole nitrate nanosuspension formulations for ocular use. Mol Pharm. 2016;13(9):2951–65.

    CAS  PubMed  Google Scholar 

  23. Mahmoud AA, Elkasabgy NA, Abdelkhalek AA. Design and characterization of emulsified spray dried alginate microparticles as a carrier for the dually acting drug roflumilast. Eur J Pharm Sci. 2018;122:64–76.

    CAS  PubMed  Google Scholar 

  24. Chaubal MV, Popescu C. Conversion of nanosuspensions into dry powders by spray drying: a case study. Pharm Res. 2008;25(10):2302–8.

    CAS  PubMed  Google Scholar 

  25. Schmid K, Arpagaus C, Friess W. Evaluation of the Nano spray dryer B-90 for pharmaceutical applications. Pharm Dev Technol. 2011;16(4):287–94.

    CAS  PubMed  Google Scholar 

  26. Ibrahim AM. Design and evaluation of econazole nitrate nanoparticles. CU Theses 2016.

  27. Maged A, Mahmoud A, Ghorab M. Hydroxypropyl-beta-cyclodextrin as cryoprotectant in nanoparticles prepared by nano-spray drying technique. J Pharm Sci Emerg Drugs. 2017;5(1):2.

    Google Scholar 

  28. Vyas A. Preparation, characterization and pharmacodynamic activity of supramolecular and colloidal systems of rosuvastatin–cyclodextrin complexes. J Incl Phenom Macrocycl Chem. 2013;76(1–2):37–46.

    CAS  Google Scholar 

  29. Borghetti GS, Lula IS, Sinisterra RD, Bassani VL. Quercetin/β-cyclodextrin solid complexes prepared in aqueous solution followed by spray-drying or by physical mixture. AAPS PharmSciTech. 2009;10(1):235–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chauhan B, Shimpi S, Paradkar A. Preparation and characterization of etoricoxib solid dispersions using lipid carriers by spray drying technique. AAPS PharmSciTech. 2005;6(3):E405–E9.

    PubMed  PubMed Central  Google Scholar 

  31. Martínez-Acevedo L, de la Luz Zambrano-Zaragoza M, Vidal-Romero G, Mendoza-Elvira S, Quintanar-Guerrero D. Evaluation of the lubricating effect of magnesium stearate and glyceryl behenate solid lipid nanoparticles in a direct compression process. Int J Pharm. 2018;545(1–2):170–5.

    PubMed  Google Scholar 

  32. Oh DH, Din F, Kim DW, Kim JO, Yong CS, Choi H-G. Flurbiprofen-loaded nanoparticles prepared with polyvinylpyrrolidone using Shirasu porous glass membranes and a spray-drying technique: nano-sized formation and improved bioavailability. J Microencapsul. 2013;30(7):674–80.

    CAS  PubMed  Google Scholar 

  33. Gabr MM, Mortada SM, Sallam MA. Carboxylate cross-linked cyclodextrin: a nanoporous scaffold for enhancement of rosuvastatin oral bioavailability. Eur J Pharm Sci. 2018;111:1–12.

    CAS  PubMed  Google Scholar 

  34. Das S, Ng WK, Tan RB. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci. 2012;47(1):139–51.

    CAS  PubMed  Google Scholar 

  35. Elela MMA, ElKasabgy NA, Basalious EB. Bio-shielding in situ forming gels (BSIFG) loaded with lipospheres for depot injection of quetiapine fumarate: in vitro and in vivo evaluation. AAPS PharmSciTech. 2017;18(8):2999–3010.

    Google Scholar 

  36. Wang Y, Zheng Y, Zhang L, Wang Q, Zhang D. Stability of nanosuspensions in drug delivery. J Control Release. 2013;172(3):1126–41.

    CAS  PubMed  Google Scholar 

  37. Ghosh I, Bose S, Vippagunta R, Harmon F. Nanosuspension for improving the bioavailability of a poorly soluble drug and screening of stabilizing agents to inhibit crystal growth. Int J Pharm. 2011;409(1–2):260–8.

    CAS  PubMed  Google Scholar 

  38. Ko MK, Pellegrino JJ, Nassimbene R, Marko P. Characterization of the adsorption-fouling layer using globular proteins on ultrafiltration membranes. J Membr Sci. 1993;76(2–3):101–20.

    CAS  Google Scholar 

  39. Sakulchaicharoen N, O'Carroll DM, Herrera JE. Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles. J Contam Hydrol. 2010;118(3–4):117–27.

    CAS  PubMed  Google Scholar 

  40. Shim J, Kang HS, Park W-S, Han S-H, Kim J, Chang I-S. Transdermal delivery of mixnoxidil with block copolymer nanoparticles. J Control Release. 2004;97(3):477–84.

    CAS  PubMed  Google Scholar 

  41. Mura P, Faucci MT, Bettinetti GP. The influence of polyvinylpyrrolidone on naproxen complexation with hydroxypropyl-β-cyclodextrin. Eur J Pharm Sci. 2001;13(2):187–94.

    CAS  PubMed  Google Scholar 

  42. Bertram U, Bodmeier R. In situ gelling, bioadhesive nasal inserts for extended drug delivery: in vitro characterization of a new nasal dosage form. Eur J Pharm Sci. 2006;27(1):62–71.

    CAS  PubMed  Google Scholar 

  43. Charoenchaitrakool M, Dehghani F, Foster N. Utilization of supercritical carbon dioxide for complex formation of ibuprofen and methyl-β-cyclodextrin. Int J Pharm. 2002;239(1–2):103–12.

    CAS  PubMed  Google Scholar 

  44. Yu D, Wang X, Li X, Chian W, Li Y, Liao Y. Electrospun biphasic drug release polyvinylpyrrolidone/ethyl cellulose core/sheath nanofibers. Acta Biomater. 2013;9(3):5665–72.

    CAS  PubMed  Google Scholar 

  45. Beg S, Raza K, Kumar R, Chadha R, Katare O, Singh B. Improved intestinal lymphatic drug targeting via phospholipid complex-loaded nanolipospheres of rosuvastatin calcium. RSC Adv. 2016;6(10):8173–87.

    CAS  Google Scholar 

  46. Ribeiro A, Figueiras A, Santos D, Veiga F. Preparation and solid-state characterization of inclusion complexes formed between miconazole and methyl-β-cyclodextrin. AAPS PharmSciTech. 2008;9(4):1102–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kumar GP, Phani A, Prasad R, Sanganal JS, Manali N, Gupta R, et al. Polyvinylpyrrolidone oral films of enrofloxacin: film characterization and drug release. Int J Pharm. 2014;471(1–2):146–52.

    CAS  PubMed  Google Scholar 

  48. Ibrahim AM. Design and evaluation of statin loaded biodegradable delivery systems to promote tissue regeneration. CU Theses. 2020.

  49. Monjo M, Rubert M, Wohlfahrt JC, Rønold HJ, Ellingsen JE, Lyngstadaas SP. In vivo performance of absorbable collagen sponges with rosuvastatin in critical-size cortical bone defects. Acta Biomater. 2010;6(4):1405–12.

    CAS  PubMed  Google Scholar 

  50. Shepardson NE, Shankar GM, Selkoe DJ. Cholesterol level and statin use in Alzheimer disease: II. Review of human trials and recommendations. Arch Neurol. 2011;68(11):1385–92.

    PubMed  PubMed Central  Google Scholar 

  51. Cal K, Centkowska K. Use of cyclodextrins in topical formulations: practical aspects. Eur J Pharm Biopharm. 2008;68(3):467–78.

    CAS  PubMed  Google Scholar 

  52. Lopedota A, Cutrignelli A, Denora N, Laquintana V, Lopalco A, Selva S, et al. New ethanol and propylene glycol free gel formulations containing a minoxidil-methyl-β-cyclodextrin complex as promising tools for alopecia treatment. Drug Dev Ind Pharm. 2015;41(5):728–36.

    CAS  PubMed  Google Scholar 

  53. Chen TC, Yu S-C, Hsu C-M, Tsai F-J, Tsai Y. Minoxidil–2-hydroxypropyl-β-cyclodextrin inclusion complexes: characterization and in vivo evaluation of an aqueous solution for hair growth in rats. J Incl Phenom Macrocycl Chem. 2017;88(1–2):27–34.

    CAS  Google Scholar 

  54. ElShagea HN, ElKasabgy NA, Fahmy RH, Basalious EB. Freeze-dried self-nanoemulsifying self-nanosuspension (SNESNS): a new approach for the preparation of a highly drug-loaded dosage form. AAPS PharmSciTech. 2019;20(7):258.

    PubMed  Google Scholar 

  55. Yokota J, Kyotani S. Influence of nanoparticle size on the skin penetration, skin retention and anti-inflammatory activity of non-steroidal anti-inflammatory drugs. J Chin Med Assoc. 2018;81(6):511–9.

    PubMed  Google Scholar 

  56. Harries MJ, Meyer K, Chaudhry I, Kloepper JE, Poblet E, Griffiths CE, et al. Lichen planopilaris is characterized by immune privilege collapse of the hair follicle's epithelial stem cell niche. J Pathol. 2013;231(2):236–47.

    CAS  PubMed  Google Scholar 

  57. Aldhalimi MA, Hadi NR, Ghafil FA. Promotive effect of topical ketoconazole, minoxidil, and minoxidil with tretinoin on hair growth in male mice. ISRN Pharmacol. 2014;2014:1–5.

    Google Scholar 

  58. Kim TK, Kim YJ, Min BH, Kim SJ. The localization of cytokeratin 19 and vimentin in Sprague Dawley albino rat skin tissue. Appl Microsc. 2014;44(1):15–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr Maged.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maged, A., Mahmoud, A.A., Salah, S. et al. Spray-Dried Rosuvastatin Nanoparticles for Promoting Hair Growth. AAPS PharmSciTech 21, 205 (2020). https://doi.org/10.1208/s12249-020-01746-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01746-5

KEY WORDS

Navigation