Skip to main content
Log in

The Fundamental and Functional Property Differences Between HPMC and PVP Co-Processed Herbal Particles Prepared by Fluid Bed Coating

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Core-shell composite particles (CPs) are the most preferred choice for direct compaction (DC), but their application in herbal tablets is limited. Hydroxypropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP) are usually employed as the shell materials, but there are few, if any, researches exploring the different effects of HPMC and PVP on the properties of herbal CPs. In this study, the CPs containing HPMC (CP X-H) and CPs containing PVP (CP X-P) were prepared based on herbal powders (X). Their physical properties were characterized comprehensively. The differences in properties between CP X-H and CP X-P were explored, and their mechanism analysis was also performed profoundly. The results demonstrated that (i) CP X-H and CP X-P exhibited similar flowability; (ii) CP X-H generally exhibited better compactibility, larger particle size, and more uniform particle size distribution, and lower bulk density, tap density, and hygroscopicity than CP X-P; (iii) compared with the tablets produced with CP X-P, ones with CP X-H exhibited similar weight variation (%), lower friability, and longer disintegration time. The mechanism analysis manifested that the differences in physical properties between HPMC and PVP were the important and fundamental factors, which led to the differences in structure and surface morphology of particles, and in fundamental properties of CPs. These findings are beneficial to the development of herbal core-shell CPs for DC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Ad:

Adhesiveness

AR:

Angle of repose

AUC:

Area under curve

AUTCC:

The area under tensile strength versus compaction force curve

CF:

Compaction force

ChP:

Chinese Pharmacopeia

CI:

Carr’s index

Co:

Cohesiveness

CP:

Composite particle

CP X-H:

Composite particles containing HPMC

CP X-P:

Composite particles containing PVP

CR:

Compaction ratio

d(0.5):

Median particle size

E SP :

Net energy per unit of quality

F :

Breaking force

f :

Equilibrium hygroscopic moisture content

Ha:

Hardness

HPMC/H:

Hydroxypropyl methylcellulose

HR:

Hausner ratio

k :

Moisture absorption constant

MC:

Moisture content

PL:

Percentage of net energy except friction energy

PM:

Physical mixture

PVP/P:

Polyvinylpyrrolidone

P y :

Yield pressure

ρ b :

Bulk density

ρ t :

Tapped density

ρ true :

True density

Re:

Resilience

R 2 :

Square of the correlation coefficient

Sp:

Springiness

Span:

Particle size distribution

TS:

Tensile strength

Un:

Uniformity

References

  1. Wu G, Zhang W, Li H. Application of metabolomics for unveiling the therapeutic role of traditional Chinese medicine in metabolic diseases. J Ethnopharmacol. 2019;242:112057. https://doi.org/10.1016/j.jep.2019.112057.

    Article  PubMed  Google Scholar 

  2. Tanner T, Antikainen O, Pollet A, Raikkonen H, Ehlers H, Juppo A, et al. Predicting tablet tensile strength with a model derived from the gravitation-based high-velocity compaction analysis data. Int J Pharm. 2019;566:194–202. https://doi.org/10.1016/j.ijpharm.2019.05.024.

    Article  CAS  PubMed  Google Scholar 

  3. Li Z, Zhao L, Lin X, Shen L, Feng Y. Direct compaction: an update of materials, trouble-shooting, and application. Int J Pharm. 2017;529(1–2):543–56. https://doi.org/10.1016/j.ijpharm.2017.07.035.

    Article  CAS  PubMed  Google Scholar 

  4. Li Z, Zhou M, Wu F, Shen L, Lin X, Feng Y. Direct compaction properties of Zingiberis Rhizoma extracted powders coated with various shell materials: improvements and mechanism analysis. Int J Pharm. 2019;564:10–21. https://doi.org/10.1016/j.ijpharm.2019.04.021.

    Article  CAS  PubMed  Google Scholar 

  5. Baroutaji A, Lenihan S, Bryan K. Compaction analysis and optimisation of convex-faced pharmaceutical tablets using numerical techniques. Particuology. 2019;47:10–21. https://doi.org/10.1016/j.partic.2018.11.002.

    Article  Google Scholar 

  6. Ren G, Clancy C, Tamer TM, Schaller B, Walker GM, Collins MN. Cinnamyl O-amine functionalized chitosan as a new excipient in direct compressed tablets with improved drug delivery. Int J Biol Macromol. 2019;141:936–46. https://doi.org/10.1016/j.ijbiomac.2019.08.265.

    Article  CAS  PubMed  Google Scholar 

  7. Li Z, Lin X, Shen L, Hong Y, Feng Y. Composite particles based on particle engineering for direct compaction. Int J Pharm. 2017;519(1–2):272–86. https://doi.org/10.1016/j.ijpharm.2017.01.030.

    Article  CAS  PubMed  Google Scholar 

  8. Li Z, Xian J, Wu F, Lin X, Shen L, Feng Y. Development of TCM-based composite particles for direct compaction by particle design. Powder Technol. 2018;338:481–92. https://doi.org/10.1016/j.powtec.2018.07.014.

    Article  CAS  Google Scholar 

  9. Chen L, Ding X, He Z, Huang Z, Kunnath KT, Zheng K, et al. Surface engineered excipients: I. improved functional properties of fine grade microcrystalline cellulose. Int J Pharm. 2018;536(1):127–37. https://doi.org/10.1016/j.ijpharm.2017.11.060.

    Article  CAS  PubMed  Google Scholar 

  10. Chen L, He Z, Kunnath KT, Fan S, Wei Y, Ding X, et al. Surface engineered excipients: III. Facilitating direct compaction tableting of binary blends containing fine cohesive poorly-compactable APIs. Int J Pharm. 2019;557:354–65. https://doi.org/10.1016/j.ijpharm.2018.12.055.

    Article  CAS  PubMed  Google Scholar 

  11. Zhou Q, Shi L, Chattoraj S, Sun CC. Preparation and characterization of surface-engineered coarse microcrystalline cellulose through dry coating with silica nanoparticles. J Pharm Sci. 2012;101(11):4258–66. https://doi.org/10.1002/jps.23301.

    Article  CAS  PubMed  Google Scholar 

  12. Chattoraj S, Shi L, Sun CC. Profoundly improving flow properties of a cohesive cellulose powder by surface coating with nano-silica through comilling. J Pharm Sci. 2011;100(11):4943–52. https://doi.org/10.1002/jps.22677.

    Article  CAS  PubMed  Google Scholar 

  13. Mullarney MP, Beach LE, Dave RN, Langdon BA, Polizzi M, Blackwood DO. Applying dry powder coatings to pharmaceutical powders using a comil for improving powder flow and bulk density. Powder Technol. 2011;212(3):397–402. https://doi.org/10.1016/j.powtec.2011.06.008.

    Article  CAS  Google Scholar 

  14. Ghoroi C, Gurumurthy L, McDaniel DJ, Jallo LJ, Dave RN. Multi-faceted characterization of pharmaceutical powders to discern the influence of surface modification. Powder Technol. 2013;236:63–74. https://doi.org/10.1016/j.powtec.2012.05.039.

    Article  CAS  Google Scholar 

  15. Yang J, Sliva A, Banerjee A, Dave RN, Pfeffer R. Dry particle coating for improving the flowability of cohesive powders. Powder Technol. 2005;158(1–3):21–33. https://doi.org/10.1016/j.powtec.2005.04.032.

    Article  CAS  Google Scholar 

  16. Vanhoorne V, Peeters E, Van Snick B, Remon JP, Vervaet C. Crystal coating via spray drying to improve powder tabletability. Eur J Pharm Biopharm. 2014;88(3):939–44. https://doi.org/10.1016/j.ejpb.2014.10.018.

    Article  CAS  PubMed  Google Scholar 

  17. Li J, Lin X, Wu F, Shen L, Wang Y, Feng Y. Application of the central composite design to optimize the calcium carbonate-HPMC co-processed excipient prepared by co-spray drying. RSC Adv. 2015;5(114):94105–14. https://doi.org/10.1039/c5ra15941e.

    Article  CAS  Google Scholar 

  18. Taki H, Kobashi A, Ishida M, Otsuka M. Fundamental evaluation and optimization of porous spherical silica for developing functional fine particles via fluidized bed coating. Int J Pharm. 2019;571:118685. https://doi.org/10.1016/j.ijpharm.2019.118685.

    Article  CAS  PubMed  Google Scholar 

  19. Dong Q, Zhou M, Lin X, Shen L, Feng Y. Differences in fundamental and functional properties of HPMC co-processed fillers prepared by fluid-bed coating and spray drying. Eur J Pharm Sci. 2018;119:147–58. https://doi.org/10.1016/j.ejps.2018.04.001.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou M, Wang Y, Wu F, Shen L, Lin X, Feng Y. Development on porous particles of Pueraria lobatae Radix for improving its compactibility and dissolution. RSC Adv. 2018;8(43):24250–60. https://doi.org/10.1039/c8ra04125c.

    Article  CAS  Google Scholar 

  21. Wentzlaff M, Senz V, Seidlitz A. Evaluation of the suitability of a fluidized bed process for the coating of drug-eluting stents. Eur J Pharm Biopharm. 2019;139:85–92. https://doi.org/10.1016/j.ejpb.2019.03.013.

    Article  CAS  PubMed  Google Scholar 

  22. Lou H, Chung JI, Kiang YH, Xiao L-Y, Hageman MJ. The application of machine learning algorithms in understanding the effect of core/shell technique on improving powder compactibility. Int J Pharm. 2019;555:368–79. https://doi.org/10.1016/j.ijpharm.2018.11.039.

    Article  CAS  PubMed  Google Scholar 

  23. Qu L, Stewart PJ, Hapgood KP, Lakio S, Morton DAV, Zhou Q. Single-step coprocessing of cohesive powder via mechanical dry coating for direct tablet compression. J Pharm Sci. 2017;106(1):159–67. https://doi.org/10.1016/j.xphs.2016.07.017.

    Article  CAS  PubMed  Google Scholar 

  24. Li Z, Wu F, Zhao L, Lin X, Shen L, Feng Y. Evaluation of fundamental and functional properties of natural plant product powders for direct compaction based on multivariate statistical analysis. Adv Powder Technol. 2018;29(11):2881–94. https://doi.org/10.1016/j.apt.2018.08.009.

    Article  CAS  Google Scholar 

  25. Huang S, Liu Y, Zhou Y, Li Q, Ren G, Jing Q, et al. Exploring the effect of PVP on the spherical agglomeration process and micromeritic properties of ascorbic acid. Powder Technol. 2019;342:929–37. https://doi.org/10.1016/j.powtec.2018.09.039.

    Article  CAS  Google Scholar 

  26. Fell JT, Newton JM. Determination of tablet strength by the diametral-compression test. J Pharm Sci. 1970;59(5):688–91. https://doi.org/10.1002/jps.2600590523.

    Article  CAS  PubMed  Google Scholar 

  27. Al-Khattawi A, Koner J, Rue P, Kirby D, Perrie Y, Rajabi-Siahboomi A, et al. A pragmatic approach for engineering porous mannitol and mechanistic evaluation of particle performance. Eur J Pharm Biopharm. 2015;94:1–10. https://doi.org/10.1016/j.ejpb.2015.04.011.

    Article  CAS  PubMed  Google Scholar 

  28. Gao Y, Hong Y, Xian J, Lin X, Shen L, Zhang X, et al. A protocol for the classification of wet mass in extrusion-spheronization. Eur J Pharm Biopharm. 2013;85(3):996–1005. https://doi.org/10.1016/j.ejpb.2013.03.016.

    Article  CAS  PubMed  Google Scholar 

  29. Paul S, Taylor LJ, Murphy B, Krzyzaniak JF, Dawson N, Mullarney MP, et al. Powder properties and compaction parameters that influence punch sticking propensity of pharmaceuticals. Int J Pharm. 2017;521(1–2):374–83. https://doi.org/10.1016/j.ijpharm.2017.02.053.

    Article  CAS  PubMed  Google Scholar 

  30. Li Z, Luo J, Jiang Q, Zhao G, Liao Z, Liang X, et al. Roles of the main physical properties of the wet granulation product of hawthorn leaf extract mixtures in high shear granulation. J Food Process Preserv. 2017;41(4). https://doi.org/10.1111/jfpp.13047.

  31. Martinez L, Peinado A, Liesum L, Betz G. Use of near-infrared spectroscopy to quantify drug content on a continuous blending process: influence of mass flow and rotation speed variations. Eur J Pharm Biopharm. 2013;84(3):606–15. https://doi.org/10.1016/j.ejpb.2013.01.016.

    Article  CAS  PubMed  Google Scholar 

  32. Yuan J, Shi L, Sun W-J, Chen J, Zhou Q, Sun CC. Enabling direct compression of formulated Danshen powder by surface engineering. Powder Technol. 2013;241:211–8. https://doi.org/10.1016/j.powtec.2013.03.010.

    Article  CAS  Google Scholar 

  33. Sun CC. Decoding powder tabletability: roles of particle adhesion and plasticity. J Adhes Sci Technol. 2011;25(4–5):483–99. https://doi.org/10.1163/016942410x525678.

    Article  CAS  Google Scholar 

  34. Fichtner F, Mahlin D, Welch K, Gaisford S, Alderborn G. Effect of surface energy on powder compactibility. Pharm Res. 2008;25(12):2750–9. https://doi.org/10.1007/s11095-008-9639-7.

    Article  CAS  PubMed  Google Scholar 

  35. Maghsoodi M, Taghizadeh O, Martin GR, Nokhodchi A. Particle design of naproxen-disintegrant agglomerates for direct compression by a crystallo-co-agglomeration technique. Int J Pharm. 2008;351(1–2):45–54. https://doi.org/10.1016/j.ijpharm.2007.09.033.

    Article  CAS  PubMed  Google Scholar 

  36. Khlibsuwan R, Pongjanyakul T. Particle agglomeration of chitosan-magnesium aluminum silicate nanocomposites for direct compression tablets. Int J Pharm. 2018;535(1–2):410–9. https://doi.org/10.1016/j.ijpharm.2017.11.030.

    Article  CAS  PubMed  Google Scholar 

  37. Santl M, Ilic I, Vrecer F, Baumgartner S. A compressibility and compactibility study of real tableting mixtures: the impact of wet and dry granulation versus a direct tableting mixture. Int J Pharm. 2011;414(1–2):131–9. https://doi.org/10.1016/j.ijpharm.2011.05.025.

    Article  CAS  PubMed  Google Scholar 

  38. Hibare S, Sivanathan R, Nadakatti S. Behaviour of soft granules under compression: effect of reactive and non-reactive nature of the binder on granule properties. Powder Technol. 2011;210(3):241–7. https://doi.org/10.1016/j.powtec.2011.03.024.

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (81973490), China; Natural Science Foundation of Shanghai (18ZR1439800, 18ZR1436600), China; China Postdoctoral Science Foundation (2019 M662278), China; Construction of Collaborative Innovation Center of Shanghai (2020-Sci&Tec-01-01-30), China; Science and Technology Research Project of Jiangxi Provincial Department of Education (GJJ190688), China; Three-year Action Plan for the Development of Traditional Chinese Medicine of Shanghai Municipal Health Planning Commission (ZY(2018-2020)-CCCX-2001-03), China; and Xinglin Young Scholar Program of Shanghai University of Traditional Chinese Medicine, China (A1-U17205010416); Postdoctoral Science Foundation of Jiangxi Province, China (2019KY42); Program of Jiangxi University of Traditional Chinese Medicine, China (2004/538200010402).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YanLong Hong or Xiao Lin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wu, F., Hong, Y. et al. The Fundamental and Functional Property Differences Between HPMC and PVP Co-Processed Herbal Particles Prepared by Fluid Bed Coating. AAPS PharmSciTech 21, 201 (2020). https://doi.org/10.1208/s12249-020-01739-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01739-4

KEY WORDS

Navigation