Skip to main content
Log in

Role of Taurine Transporter in the Retinal Uptake of Vigabatrin

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Vigabatrin (VGB) is a first-line drug used for treatment of infantile spasms. On therapeutic dose, VGB accumulates in the retina causing permanent peripheral visual field constriction. The mechanism involved in retinal accumulation of VGB is ambiguous. In the present study, mechanism of VGB transport into retina was evaluated. VGB uptake into retina was studied in vitro using human adult retinal pigment epithelial (ARPE-19) cells as a model for outer blood retinal barrier. The VGB cell uptake studies demonstrated saturation kinetics with Km value of 13.1 mM and uptake was significantly increased at pH 7.4 and hyperosmolar conditions indicating involvement of carrier-mediated Na+–Cl-dependent transporter. In the presence of taurine transporter (TauT) substrates (taurine and GABA) and inhibitor guanidinoethyl sulfonate (GES), the uptake of VGB decreased significantly demonstrating contribution of TauT. The VGB retinal levels in rats were decreased by 1.5- and 1.3-folds on chronic administration of GES and taurine, respectively. In conclusion, this study demonstrated the TauT involvement in VGB uptake and accumulation in retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pesaturo KA, Spooner LM, Belliveau P. Vigabatrin for infantile spasms. Pharmacotherapy. 2011;31(3):298–311.

    Article  CAS  Google Scholar 

  2. Waterhouse EJ, Mims KN, Gowda SN. Treatment of refractory complex partial seizures: role of vigabatrin. Neuropsychiatr Dis Treat. 2009;5(1):505–15.

    Article  CAS  Google Scholar 

  3. Nøhr MK, Frølund S, Holm R, Nielsen CU. Pharmacokinetic aspects of the anti-epileptic drug substance vigabatrin: focus on transporter interactions. Ther Deliv. 2014;5(8):927–42.

    Article  Google Scholar 

  4. Comaish IF, Gorman C, Brimlow GM, Barber C, Orr GM, Galloway NR. The effects of vigabatrin on electrophysiology and visual fields in epileptics: a controlled study with a discussion of possible mechanisms. Doc Ophthalmol. 2002;104:195–212.

    Article  CAS  Google Scholar 

  5. Pellock JM, Hrachovy R, Shinnar S, Baram TZ, Bettis D, Dlugos DJ, et al. Infantile spasms: a U.S. consensus report. Epilepsia. 2010;51(10):2175–89.

    Article  Google Scholar 

  6. FDA. Reference ID : 2886665, FDA Approved Labeling for NDA 020427, WARNING : VISION LOSS Distribution Program for SABRIL Magnetic Resonance Imaging ( MRI ) Abnormalities Suicidal Behavior and Ideation Withdrawal of Antiepileptic Drugs ( AEDs ) Adverse Reaction. 2009.

  7. Sills GJ, Butler E, Forrest G, Ratnaraj N, Patsalos PN, Brodie MJ. Vigabatrin, but not gabapentin or topiramate, produces concentration-related effects on enzymes and intermediates of the GABA shunt in rat brain and retina. Epilepsia. 2003;44(7):886–92.

    Article  CAS  Google Scholar 

  8. Heim MK, Gidal BE. Vigabatrin-associated retinal damage - potential biochemical mechanisms. Acta Neurol Scand. 2012;126:219–28.

    Article  CAS  Google Scholar 

  9. Tao Y, Yang J, Ma Z, Yan Z, Liu C, Ma J, et al. The vigabatrin induced retinal toxicity is associated with photopic exposure and taurine deficiency: an in vivo study. Cell Physiol Biochem. 2016;40:831–46.

    Article  CAS  Google Scholar 

  10. Jammoul F, Dégardin J, Pain D, Gondouin P, Simonutti M, Dubus E, et al. Taurine deficiency damages photoreceptors and retinal ganglion cells in vigabatrin-treated neonatal rats. Mol Cell Neurosci. 2010;43(4):414–21.

    Article  CAS  Google Scholar 

  11. Jammoul F, Wang Q, Nabbout R, Coriat C, Duboc A, Simonutti M, et al. Taurine deficiency is a cause of vigabatrin-induced retinal phototoxicity. Ann Neurol. 2009;65(1):98–107.

    Article  CAS  Google Scholar 

  12. Froger N, Cadetti L, Lorach H, Martins J, Bemelmans AP, Dubus E, et al. Taurine provides neuroprotection against retinal ganglion cell degeneration. PLoS One. 2012;7(10):1–11.

    Article  Google Scholar 

  13. Patent T. European patent application. EP Pat 0879946A2 [Internet]. 1998;1(19):1–14. Available from: http://info.sipcc.net/files/patent/fulltext/EP/200605/EP2099194A1/EP2099194A1.PDF

  14. Harris R, Shen W. Review Taurine a “very essential” amino acid. Mol Vis. 2012;18:2673–86.

    Google Scholar 

  15. Amoreaux WL’. The roles of taurine in the retina. In: Transworld Research Network. 2012. p. 215–54.

  16. Kubo Y, Akanuma S, Hosoya K. Ac ce pt us cr t. Expert Opin Drug Metab Toxicol [internet]. 2018;0(0). Available from: https://doi.org/10.1080/17425255.2018.1472764, 2018.

  17. Nøhr MK, Thale ZI, Brodin B, Hansen SH, Holm R, Nielsen CU. Intestinal absorption of the antiepileptic drug substance vigabatrin is altered by infant formula in vitro and in vivo. Pharmacol Res Perspect. 2014;2(2):1–11.

    Article  Google Scholar 

  18. Emily L Abbot; Danielle S Grenade; David J. Kennedy; Kelly M. Gatfield; David T. Thwaites. Vigabatrin transport across the human intestinal epithelial. Br J Pharmacol 2006;147:298–306.

  19. Nøhr MK, Juul RV, Thale ZI, Holm R, Kreilgaard M, Nielsen CU. Is oral absorption of vigabatrin carrier-mediated? Eur J Pharm Sci. 2015;69:10–8.

    Article  Google Scholar 

  20. Thwaites DT, Anderson CMH. The SLC36 family of proton-coupled amino acid transporters and their potential role in drug transport. Br J Pharmacol. 2011;164(7):1802–16.

    Article  CAS  Google Scholar 

  21. Plum J, Nøhr MK, Hansen SH, Holm R, Nielsen CU. The anti-epileptic drug substance vigabatrin inhibits taurine transport in intestinal and renal cell culture models. Int J Pharm. 2014;473:395–7.

    Article  CAS  Google Scholar 

  22. Majumdar S, Gunda S, Pal D, Mitra AK. Functional activity of a monocarboxylate transporter, MCT1, in the human retinal pigmented epithelium cell line, ARPE-19. Mol Pharm. 2005;2(2):109–17.

    Article  CAS  Google Scholar 

  23. El-Sherbeny A, Naggar H, Miyauchi S, Shamsul Ola M, Maddox DM, Martin PM, et al. Osmoregulation of taurine transporter function and expression in retinal pigment epithelial, ganglion, and Müller cells. Invest Ophthalmol Vis Sci. 2004;45(2):694–701.

    Article  Google Scholar 

  24. Ryan J. Huxtable, Anders Lehmann, Mats Sandberg SS, Mori A, Cohen BD, Koide H (eds) Guanidines 2. Springer, Boston, MA. In: Guidelines 2. 1989. p. 189–90.

  25. Frosini M, Sesti C, Dragoni S, Valoti M, Palmi M, Dixon HBF, et al. Interactions of taurine and structurally related analogues with the GABAergic system and taurine binding sites of rabbit brain. Br J Pharmacol. 2003;138(6):1163–71.

    Article  CAS  Google Scholar 

  26. Police A, Shankar VK, Narasimha Murthy S. RP-HPLC method for simultaneous estimation of vigabatrin, gamma-aminobutyric acid and taurine in biological samples. J Chromatogr B Anal Technol Biomed Life Sci [Internet]. 2018;1076(January):44–53. Available from: https://doi.org/10.1016/j.jchromb.2018.01.010, 2018.

  27. Tomi M, Tajima A, Tachikawa M. Hosoya K ichi. Function of taurine transporter (Slc6a6/TauT) as a GABA transporting protein and its relevance to GABA transport in rat retinal capillary endothelial cells. Biochim Biophys Acta Biomembr. 2008;1778:2138–42.

    Article  CAS  Google Scholar 

  28. Kubo Y, Akanuma S-I, Hosoya K-I. Impact of SLC6A transporters in physiological taurine transport at the blood-retinal barrier and in the liver. Biol Pharm Bull. 1903;39.

  29. Monte D, Miyamoto Y, Arbor A. Properties of taurine transport in a human retinal pigment epithelial cell line. Curr Eye Res. 1993;12(1):29–36.

    Article  Google Scholar 

  30. Yahara T, Tachikawa M, Akanuma S, Kubo Y, Hosoya K. Amino acid residues involved in the substrate specificity of TauT/SLC6A6 for taurine and γ-aminobutyric acid. Biol Pharm Bull. 2014;37(5):817–25.

    Article  CAS  Google Scholar 

  31. Bridges CC, Shamsul Ola M, Prasad PD, El-sherbeny A, Ganapathy V, Smith SB, et al. Regulation of taurine transporter expression by NO in cultured human retinal pigment epithelial cells. Am J Physiol Cell Physiol [Internet]. 2001;281:C1825–36. Available from: www.ajpcell.org

  32. Tomi M, Terayama T, Isobe T, Egami F, Morito A, Kurachi M, et al. Function and regulation of taurine transport at the inner blood-retinal barrier. Microvasc Res. 2007;73:100–6.

    Article  CAS  Google Scholar 

  33. Anderson CMH, Howard A, Walters JRF, Ganapathy V, Thwaites DT. Taurine uptake across the human intestinal brush-border membrane is via two transporters: H+-coupled PAT1 (SLC36A1) and Na+- and Cl--dependent TauT (SLC6A6). J Physiol. 2009;587(4):731–44.

    Article  CAS  Google Scholar 

  34. Hillenkamp J, Hussain AA, Jackson TL, Cunningham JR, Marshall J. Taurine uptake by human retinal pigment epithelium : implications for the transport of small solutes between the choroid and the outer retina. Invest Ophthalmol Vis Sci. 2004;45(12):4529–34.

    Article  Google Scholar 

  35. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev [Internet] 2005;85(3):845–881. Available from: https://doi.org/10.1152/physrev.00021.2004

  36. Pelkonen L, Sato K, Reinisalo M, Kidron H, Tachikawa M, Watanabe M, et al. LC-MS/MS based quantitation of ABC and SLC transporter proteins in plasma membranes of cultured primary human retinal pigment epithelium cells and immortalized ARPE19 cell line. Mol Pharm. 2017;14(3):605–13.

    Article  CAS  Google Scholar 

  37. Pow DV. Amino acids and their transporters in the retina. Neurochem Int. 2001;38:463–84.

    Article  CAS  Google Scholar 

  38. Casini G, W. Rickman D, Brecha NC. Expression of the γ-aminobutyric acid (GABA) plasma.pdf. Invest Ophthalmol Vis Sci 2006;47(4):1682–1690.

  39. Yokoyama T, Lin L, Chakrapani B, Reddy VN. Hypertonic stress increases NaK ATPase , taurine , and myoinositol in human lens and retinal pigment epithelial cultures. Investig Ophthalmol Vis Sci. 1993;34(8):2512–7.

    CAS  Google Scholar 

  40. Rasmussen RN, Lagunas C, Plum J, Holm R, Nielsen CU. Interaction of GABA-mimetics with the taurine transporter (TauT, Slc6a6) in hyperosmotic treated Caco-2, LLC-PK1 and rat renal SKPT cells. Eur J Pharm Sci. 2016;82:138–46.

    Article  CAS  Google Scholar 

  41. Sivakami S, Ganapathy V, Leibach FH, Miyamoto Y. The y-aminobutyric acid transporter and its interaction with taurine in the apical membrane of the bovine retinal pigment epithelium. Biochem J. 1992;283:391–7.

    Article  CAS  Google Scholar 

  42. Huxtable RJ. Effect of guanidinoethane sulfonate on taurine uptake by rat retina. J Neurosci Res. 1984;186(11):179–86.

    Google Scholar 

  43. Rasmussen AD, Truchot N, Pickersgill N, Thale ZI, Rosolen SG, Botteron C. The effects of taurine on vigabatrin, high light intensity and mydriasis induced retinal toxicity in the pigmented rat. Exp Toxicol Pathol [internet]. 2014;67(1):13–20. Available from: https://doi.org/10.1016/j.etp.2014.09.004, 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Narasimha Murthy.

Ethics declarations

The animal study was conducted as per study protocol approved by the institutional animal ethical committee at the University of Mississippi, Mississippi 38677, USA.

Conflict of Interest

The authors declare they have no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Police, A., Shankar, V.K. & Murthy, S.N. Role of Taurine Transporter in the Retinal Uptake of Vigabatrin. AAPS PharmSciTech 21, 196 (2020). https://doi.org/10.1208/s12249-020-01736-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01736-7

Key Words

Navigation