Skip to main content
Log in

Effect of Spray Drying on Amorphization of Indomethacin Nicotinamide Cocrystals; Optimization, Characterization, and Stability Study

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Cocrystals have gained a lot of consideration regarding its superior role in enhancement of solubility and dissolution of the included API. Cocrystals could be converted to coamorphous systems via different techniques like milling and quench cooling; however, the use of spray-drying technique has not been investigated before. So, the aim of this study was to explore the effect of spray drying on the amorphization of indomethacin/nicotinamide, INDNIC, as model cocrystals. Spray-drying operating parameters were optimized using the Taguchi design of experiment for maximum powder yield and low moisture content. The obtained INDNIC spray-dried cocrystals were characterized for their degree of crystallinity, morphology, moisture content, and dissolution performance. In addition, stability study was performed at different temperature and humidity conditions. Experimental design results delineate that spray-drying inlet temperature and cocrystal concentrations as the most influential factors for maximum powder yield and low moisture content. Powder X-ray diffraction and differential scanning calorimetry studies revealed the conversion of INDNIC cocrystals to a partial coamorphous or coamorphous structure without dissociation of INDNIC molecular structure. INDNIC coamorphous powders showed a significantly higher release of IND compared with cocrystals and remain physically stable for 2 months when stored in the refrigerator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Štukelj J, Svanbäck S, Kristl J, Strachan CJ, Yliruusi J. Image-based investigation: biorelevant solubility of α and γ indomethacin. Anal Chem. 2019;91(6):3997–4003. https://doi.org/10.1021/acs.analchem.8b05290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sathisaran I, Dalvi SV. Engineering cocrystals of poorlywater-soluble drugs to enhance dissolution in aqueous medium. Pharmaceutics. 2018;10(3):108–82. https://doi.org/10.3390/pharmaceutics10030108.

    Article  CAS  PubMed Central  Google Scholar 

  3. Ellenberger D, O’Donnell KP, Williams III RP. 2016. Optimizing the formulation of poorly water-soluble drugs, in: Williams III RO, Watts AB, Miller DA (Eds.), Formulating of poorly water soluble drugs. AAPS press, Springer, 2016, pp.41–120.

  4. Kuminek G, Cao F, Bahia de Oliveira da Rocha A, Cardoso SG, Rodríguez-Hornedo N. 2016. Cocrystals to facilitate delivery of poorly soluble compounds beyond-rule-of-5. Adv Drug Deliv Rev. 101(1 June):143–166. https://doi.org/10.1016/j.addr.2016.04.022

  5. Singh D, Bedi N, Tiwary AK. Enhancing solubility of poorly aqeuous soluble drugs: critical appraisal of techniques. J Pharm Inv. 2018;48(5):509–26.

    Article  CAS  Google Scholar 

  6. Shahba AA, Ahmed AR, Alanazi FK, Mohsin K, Abdel-Rahman S. Multi-layer self-nanoemulsifying pellets: an innovative drug delivery system for the poorly water soluble drug cinnarizine. AAPS PharmSciTech. 2018;19(5):2087–102. https://doi.org/10.1208/s12249-018-0990-7.

    Article  CAS  PubMed  Google Scholar 

  7. Aakeröy CB, Fasulo ME, Desper J. Cocrystal or salt: does it really matter? Mol Pharm. 2007;4(3):317–22. https://doi.org/10.1021/mp060126o.

    Article  CAS  PubMed  Google Scholar 

  8. Lipert MP, Rodríguez-Hornedo N. Cocrystal transition points: role of cocrystal solubility, drug solubility, and solubilizing agents. Mol Pharm. 2015;12(10):3535–46. https://doi.org/10.1021/acs.molpharmaceut.5b00111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ali HRH, Saleem IY, Tawfeek HM. Insight into inclusion complexation of indomethacin nicotinamide cocrystals. J Incl Phenom Macrocycl Chem. 2016;84(3–4):179–88. https://doi.org/10.1007/s10847-016-0594-3.

    Article  CAS  Google Scholar 

  10. Duggirala NK, Perry ML, Almarsson Ö, Zaworotko MJ. Pharmaceutical cocrystals: along the path to improved medicines. Chem Commun. 2016;52(4):640–55. https://doi.org/10.1039/c5cc08216a.

    Article  CAS  Google Scholar 

  11. Alhalaweh A, Kaialy W, Buckton G, Gill H, Nokhodchi A, Velaga SP. Theophylline cocrystals prepared by spray drying: physicochemical properties and aerosolization performance. AAPS PharmSciTech. 2013;14(1):265–76. https://doi.org/10.1208/s12249-012-9883-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chiou D, Langrish TAG. A comparison of crystallisation approaches in spray drying. J Food Eng. 2008;88(2):177–85. https://doi.org/10.1016/j.jfoodeng.2008.02.004.

    Article  Google Scholar 

  13. Zhu B, Zhang Q, Wang JR, Mei X. Cocrystals of baicalein with higher solubility and enhanced bioaviability. Cryst Growth and Des. 2017;17(4):1893–901. https://doi.org/10.1021/acs.cgd.6b01863.

    Article  CAS  Google Scholar 

  14. Shan N, Zaworotko MJ. The role of cocrystals in pharmaceutical science. Drug Discov Today. 2008;13(9–10):440–6. https://doi.org/10.1016/j.drudis.2008.03.004.

    Article  CAS  PubMed  Google Scholar 

  15. Lim AW, Lӧbmann K, Grohganz H, Rades T, Chieng N. Investigation of physical properties and stability of indomethacin-cimetidine and naproxen-cimetidine co-amorphous systems prepared by quench cooling, co-precipietation and ball milling. J Pharm Pharmcol. 2016;68(1):36–45. https://doi.org/10.1111/jphp.12494.

    Article  CAS  Google Scholar 

  16. Dengale SJ, Ranjan OP, Hussen SS, Krishna B, Musmade PB, Shenoy GG, et al. Preparation and chacaterisation of co-amorphous Ritonavir–Indomethacin systems by solvent evaporation technique: improved dissolution behavior and physical stability without evidence of intermolecular interactions. Eur J Pharm Sci. 2014;62(1):57–64. https://doi.org/10.1016/j.ejps.2014.05.015.

    Article  CAS  PubMed  Google Scholar 

  17. Shi Q, Moinuddin SM, Cai T. Advances in coamrphous drug delivery systems. Acta Pharm Sinica B. 2019;9(1):19–35. https://doi.org/10.1016/j.apsb.2018.08.002.

    Article  Google Scholar 

  18. Chavan RB, Thipparabiona R, Kumar D, Shastri NR. Coamorphous systems: a product development prespective. Int J Pharm. 2016;515(1–2):403–15. https://doi.org/10.1016/j.ijpharm.2016.10.043.

    Article  CAS  PubMed  Google Scholar 

  19. Guo Y, Shalaev E, Smith S. Physical stability of pharmaceutical formulations: solid state characterization of amorphous dispersions. TrAC Trends in Anal Chem. 2013;49(September):137–44. https://doi.org/10.1016/j.trac.2013.06.002.

    Article  CAS  Google Scholar 

  20. Gao Y, Liao J, Qi X, Zhang J. Coamorphous repaglinide-saccharin with enhanced dissolution. Int J Pharm. 2013;450(1–2):290–5. https://doi.org/10.1016/j.ijpharm.2013.04.032.

    Article  CAS  PubMed  Google Scholar 

  21. Fung M, Berzins K, Suryanarayanan R. Physical stability and dissolution behaviour of ketoconazole-organic acid coamorphous systems. Mol Pharm. 2018;15(5):1862–9. https://doi.org/10.1021/acs.molpharmaceut.8b00035.

    Article  CAS  PubMed  Google Scholar 

  22. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25(5):999–1022. https://doi.org/10.1007/s11095-007-9475-1.

    Article  CAS  PubMed  Google Scholar 

  23. Alhalaweh A, Velaga SP. Formation of cocrystals from stoichiometric solutions of incongruently saturating systems by spray drying. Cryst Growth Des. 2010;10(8):3302–5. https://doi.org/10.1021/cg100451q.

    Article  CAS  Google Scholar 

  24. Al-Shdefat R, Anwer MA, Fayed MH, Alsulays BB, Tawfeek HM, Abdel-Rahman RF, et al. Preparation and evaluation of spray dried rosuvastatin caclium-PVP microparticles for the imropvment of serum lipid profile. J Drug Del Sci Tech. 2020;55(February):101342. https://doi.org/10.1016/j.jddst.2019.101342.

    Article  CAS  Google Scholar 

  25. Lenz E, Lӧbmann K, Rades T, Knop K, Kleinebudde P. Hot melt extrusion and spray drying of coamorphous indomethacin-arginine with polymers. J Pharm Sci. 106(1):302–12. https://doi.org/10.1016/j.xphs.2016.09.027.

  26. Jensen KT, Blaagjerg LI, Lenz E, Bohr A, Grohganz H, Kleinebudde P, et al. Preparation and characterization of spray dried co-amorphous drug-amino acid salts. J Pharm Pharmcol. 2016;68(5):615–24. https://doi.org/10.1111/jphp.12458.

    Article  CAS  Google Scholar 

  27. Tawfeek HM. Evaluation of PEG and mPEG-co-(PGA-co-PDL) microparticles loaded with sodium dicolfenac. S Pharm J. 2013;21(4):387–97. https://doi.org/10.1016/j.jsps.2012.11.006.

    Article  Google Scholar 

  28. Ali HRH, Alhalaweh A, Velaga SP. Vibrational spectroscopic investigation of polymorphs and cocrystals of indomethacin. Drug Dev Ind Pharm. 2013;39(5):625–34. https://doi.org/10.3109/03639045.2012.671831.

    Article  CAS  PubMed  Google Scholar 

  29. Maltesen MJ, Bjerregaard S, Hovgaard L, Havelund S, Van de Weert M. Quailty by design - spray drying of insulin intended for inhalation. Eur J Pharm Biopharm. 2008;70(3):828–38. https://doi.org/10.1016/j.ejpb.2008.07.015.

    Article  CAS  PubMed  Google Scholar 

  30. Shah B, Kakumanu VK, Bansal AK. Analytical techniques for quantification of amorphous/crystalline phases in pharmaceutical solids. J Pharm Sci. 2006;95(8):1641–65.

    Article  CAS  Google Scholar 

  31. Lutz R, Aserin A, Wicker L, Garti N. Release of electrolytes from W/O/W double emulsions stabilized by a soluble complex of modified pectin and whey protein isolate. Colloids Surf B: Biointerfaces. 2009;74(1):178–85. https://doi.org/10.1016/j.colsurfb.2009.07.014.

    Article  CAS  PubMed  Google Scholar 

  32. Khazaei KM, Jafari SM, Ghorbani M, Kakhki AH. Application of maltodextrin and gum Arabic in microencapsulation of saffron petal’s anthocyanins and evaluating their storage stability and color. Carbohydrate Polymers. 2014;105(25 May):57–62. https://doi.org/10.1016/j.carpol.2014.01.042.

    Article  Google Scholar 

  33. Kanojia G, Willems G-J, Frijlink HW, Kersten GFA, Soema PC, Amorij JP. A design of experiment approach to predict product and process parameters for a spray dried influenza vaccine. Int J Pharm. 2016;511(2):1098–111. https://doi.org/10.1016/j.ijpharm.2016.08.022.

    Article  CAS  PubMed  Google Scholar 

  34. Assadpour E, Jafar SM. Spray drying of folic acid within nano-emulsions: optimization by Taguchi approach. Dry Tech. 2017;35(9):1152–60. https://doi.org/10.1080/07373937.2016.1242016.

    Article  CAS  Google Scholar 

  35. Alalaiwe A, Fayed MH, Alshahrani SM, Alsulays BB, Alshetaili AS, Tawfeek HM, et al. Application of deign of experiment approach for investigating the effect of pregelatinized starch on critical quality attributes of rapid orally disintegrating tablets. J Drug Del Sci Tech. 2019;49(February):227–34. https://doi.org/10.1016/j.jddst.2018.11.018.

    Article  CAS  Google Scholar 

  36. Dolinsky A, Maletskaya K, Snezhkin Y. Fruit and vegetable powders production technology on the bases of spray and convective drying methods. Dry Technol. 2000;18(3):747–58. https://doi.org/10.1080/07373930008917735.

    Article  CAS  Google Scholar 

  37. Dolinsky AA. High-temperature spray drying. Dry Technol. 2001;19(5):785–806. https://doi.org/10.1081/DRT-100103770.

    Article  CAS  Google Scholar 

  38. Chegini GR, Ghobadian B. Spray dryer parameters for fruit juice drying. World J Agric Sci. 2007;3(2):230–6.

    Google Scholar 

  39. LeClair DA, Cranston ED, Xing Z, Thompson MR. Optimization of spray drying conditions for yield, particle size and biological activity of thermally stable viral vectors. Pharm Res. 2016;33(11):2763–76. https://doi.org/10.1007/s11095-016-2003-4.

    Article  CAS  PubMed  Google Scholar 

  40. Patil SP, Modi SR, Bansal AK. Generation of 1:1 carbamezapine: nicotinamide cocrystals by spray drying. Eur J Pharm Sci. 2014;62(1 October):251–75. https://doi.org/10.1016/j.ejps.2014.06.001.

    Article  CAS  PubMed  Google Scholar 

  41. Kemp IC, Hartwig T, Hamilton P, Wadley R, Biston A. 2013. Spray drying of fine particles from organic solvents at small and large scale. Paper presented at Eurodrying 13, Paris, October 2013, and published in this issue of Drying Technology 2015.

  42. Matsuda Y, Kawaguchi S, Kobayashi H, Nishijo J. Physicochemical characterization of spray-dried phenylbutazone polymorphs. J Pharm Sci. 1984;73(2):173–9. https://doi.org/10.1002/jps.2600730209.

    Article  CAS  PubMed  Google Scholar 

  43. Corrigan OI. Thermal analysis of spray dried products. Thermochim Acta. 1995;248(2 January):245–58. https://doi.org/10.1016/0040-6031(94)01891-J.

    Article  CAS  Google Scholar 

  44. Chiou D, Langrish TAG, Braham R. The effect of temperature on the crystallinity of lactose powders produced by spray drying. J Food Eng. 2008;86(2):288–93. https://doi.org/10.1016/j.jfoodeng.2007.10.005.

    Article  CAS  Google Scholar 

  45. Kumar S, Gokhale R, Burgess DJ. Quality by design approach to spray drying processing of crystalline nanosuspensions. Int J Pharm. 2014;464(1–2):234–42. https://doi.org/10.1016/j.ijpharm.2013.12.039.

    Article  CAS  PubMed  Google Scholar 

  46. Kojima T, Tsutsumi S, Yamamoto K, Ikeda Y, Moriwaki T. High-through put cocrystals slurry screening by use of in situ Raman spectroscopy and multi-well plate. Int J Pharm. 2010;399(1–2):52–9. https://doi.org/10.1016/j.ijpharm.2010.07.055.

    Article  CAS  PubMed  Google Scholar 

  47. Shayanfar A, Velaga S, Jouyban A. Solubility of carbamazepine, nicotinamide and carbamazepine-nicotinamide cocrystals in ethanol water mixtures. Fluid Phase Equilibria. 2014;363(15 February):97–105. https://doi.org/10.1016/j.fluid.2013.11.024.

    Article  CAS  Google Scholar 

  48. Lӧbmann K, Grohganz H, Laitinen R, Strachan C, Rades T. 2013. Amino acids as co-amorphous stabilizers for poorly water soluble drugs - part 1: preparation, stability and dissolution enhancement. Eur J Pharm BioPharm. 85 (3, part B) 873-881. https://doi.org/10.1016/j.ejpb.2013.03.014.

  49. Worku ZA, Aarts J, Singh A, Van den Mooter G. Drug-polymer miscibility across a spray dryer: a case study of naproxen and miconazole solid dispersions. Mol Pharm. 2014;11(4):1094–101. https://doi.org/10.1021/mp4003943.

    Article  CAS  PubMed  Google Scholar 

  50. Hino T, Ford LJ, Powell MW. Assessment of nicotinamide polymorphs by differential scanning calorimetry. Thermochim Acta. 2001;374(1):85–92. https://doi.org/10.1016/S0040-6031(01)00491-9.

    Article  CAS  Google Scholar 

  51. Descamps M, Willart JF. Perspectives on the amorphization/milling relationship in pharmaceutical materials. Adv Drug Del Rev. 2016;100(1 May):51–66. https://doi.org/10.1016/j.addr.2016.01.011.

    Article  CAS  Google Scholar 

  52. Pilcer G, Wauthoz N, Amighi K. Lactose characteristics and the generation of the aerosol. Adv Drug Del Rev. 2012;64(3):233–56. https://doi.org/10.1016/j.addr.2011.05.003.

    Article  CAS  Google Scholar 

  53. Wu L, Miao X, Shan Z, Huang Y, Li L, Pan X, et al. Studies on the spray dried lactose as carrier for dry powder inhalation. Asian J Pharm Sci. 2014;9(6):336–41. https://doi.org/10.1016/j.ajps.2014.07.006.

    Article  Google Scholar 

  54. Ståhl K, Claesson M, Lilliehorn P, Linden H, Backstrӧm K. The effect of process variables on the degradation and physical properties of spray dried insulin intended for inhalation. Int J Pharm. 2002;233(1–2):227–37. https://doi.org/10.1016/S0378-5173(01)00945-0.

    Article  PubMed  Google Scholar 

  55. Chew NYK, Shekunov BY, Tong HHY, Chow AHL, Savage C, Wu J, et al. Effect of amino acids on the dispersion of disodium cromoglycate powders. J Pharm Sci. 2005;94(10):2289–300. https://doi.org/10.1002/jps.20426.

    Article  CAS  PubMed  Google Scholar 

  56. Rodriguez-Hernandez GR, Gonzalez-Garcia R, Grajales-Lagunes A, Ruiz-Cabrera MA, Abud-Archila M. Spray-drying of cactus pear juice (Opuntia streptacantha): effect on the physicochemical properties of powder and reconstituted product. Dry Technol. 2005;23(4):955–73. https://doi.org/10.1080/DRT-200054251.

    Article  CAS  Google Scholar 

  57. Santhalakshmy S, Don Bosco SJ, Francis S, Sabeena M. Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Tech. 2015;274(April):37–43. https://doi.org/10.1016/j.powtec.2015.01.016.

    Article  CAS  Google Scholar 

  58. Walton DE, Mumford CJ. The morphology of spray-dried particles: the effect of process variables upon the morphology of spray-dried particles. Chem Eng Res and Design. 1999;77(5):442–60. https://doi.org/10.1205/026387699526296.

    Article  CAS  Google Scholar 

  59. Box KJ, Comer J, Taylor R, karki S, Ruiz R, Price R, Fotaki N. Small-scale assays for studying dissolution of pharmaceutical cocrystals for oral administration. AAPS PharmSci Tech. 2016;17(2):245–51. https://doi.org/10.1208/s12249-015-0362-5.

  60. Thakuria R, Delori A, Jones W, Lipoert MP, Roy L, Rodríguez-Hornedo N. Pharmaceutical cocrystals and poorly soluble drugs. Int J Pharm. 2013;453(1):101–25. https://doi.org/10.1016/j.ijpharm.2012.10.043.

    Article  CAS  PubMed  Google Scholar 

  61. Ambike AA, Mahadik KR, Paradkar A. Spray-dried amorphous solid dispersions of simvastatin, a low Tg drug: in vitro and in vivo evaluations. Pharm Res. 2005;22(6):990–8. https://doi.org/10.1007/s11095-005-4594-z.

    Article  CAS  PubMed  Google Scholar 

  62. Alonzo DE, Zhang GGZ, Zhou D, Gao Y, Taylor LS. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res. 2010;27(4):608–18. https://doi.org/10.1007/s11095-009-0021-1.

    Article  CAS  PubMed  Google Scholar 

  63. Xiong X, Xu K, Du Q, Zeng X, Xiao Y, Yang H, et al. Effects of temperature and solvent on the solid-state transformations of pranlukast during mechanical milling. Int J Pharm. 2017;106(6):1680–7. https://doi.org/10.1016/j.xphs.2017.02.020.

    Article  CAS  Google Scholar 

  64. Wu W, Wang Y, Lӧbmann K, Grohganz H, Rades T. Transformation between co-amorphous and co-crystal systems and their influence on the formation and physical stability of co-amorphous systems. Mol Pharm. 2019;16(3):1294–304. https://doi.org/10.1021/acs.molpharmaceut.8b01229.

    Article  CAS  PubMed  Google Scholar 

  65. Rahman Z, Agarabi C, Zidan AS, Khan SR, Khan MA. Physico-mechanical and stability evaluation of carbamazepine cocrystal with nicotinamide. AAPS PharmSci Tech. 2011;12(2):693–704. https://doi.org/10.1208/s12249-011-9603-4.

  66. Kumar S, Nada A. Pharmaceutical cocrystals: an overview. Indian J Pharm Sci. 2017;79(6):858–71. https://doi.org/10.4172/pharmaceutical-sciences.1000302.

    Article  Google Scholar 

  67. Xie T, Taylor LS. Effect of temperature and moisture on the physical stability of binary and ternary amorphous solid dispersions of celecoxib. J Pharm Sci. 2017;106(1):100–10. https://doi.org/10.1016/j.xphs.2016.06.017.

    Article  CAS  PubMed  Google Scholar 

  68. Rahman Z, Zidan AS, Khan MA. Formulation and evaluation of a protein-loaded solid dispersions by non-destructive methods. AAPS Journal. 2010;12(2):158–70. https://doi.org/10.1208/s12248-009-9171-7.

    Article  CAS  PubMed  Google Scholar 

  69. International Conference on Harmonization (ICH) Q1A, Stability testing of new drug substances and products. http://www.ich.org/LOB/media/MEDIA419.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesham M. Tawfeek.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tawfeek, H.M., Chavan, T. & Kunda, N.K. Effect of Spray Drying on Amorphization of Indomethacin Nicotinamide Cocrystals; Optimization, Characterization, and Stability Study. AAPS PharmSciTech 21, 181 (2020). https://doi.org/10.1208/s12249-020-01732-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01732-x

Key Words

Navigation