Skip to main content
Log in

Application of Process Analytical Technology for Pharmaceutical Coating: Challenges, Pitfalls, and Trends

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Coating process is a critical unit operation for manufacturing solid oral dosage forms. For a long time, the coating weight gain has been discerned as the most important, if not only, characteristic describing the coating quality. As the introduction of quality by design (QbD) and advancement of process analytical technology (PAT), nowadays more techniques are available to analyze other quality attributes which have been overlooked but have substantial impacts on the performance of coated products. The techniques that permit rapid and non-destructive measurements are of particular importance to improve process operation and product quality. This article reviews the analytical techniques that have been and potentially could be used as PAT tools for characterizing the quality of pharmaceutical coating product. By identifying the challenges and pitfalls encountered during PAT application, the review aims at fostering the adoption of PAT for paving the way to enhanced quality and efficiency of the coating processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cole G, Hogan J, Aulton M. Pharmaceutical Coating Technology. London: CRC Press; 1995. https://doi.org/10.3109/9780203014356.

  2. Knop K, Kleinebudde P. PAT-tools for process control in pharmaceutical film coating applications. Int J Pharm. 2013;457(2):527–36. https://doi.org/10.1016/j.ijpharm.2013.01.062.

    Article  CAS  PubMed  Google Scholar 

  3. McGinity JW, Felton LA Aqueous polymeric coatings for pharmaceutical dosage forms Informa Healthcare USA 2008.

  4. FDA. Guidance for Industry: Q8 (2) Pharmaceutical development. 2009.

    Google Scholar 

  5. Yu LX, Amidon G, Khan MA, Hoag SW, Polli J, Raju GK, et al. Understanding pharmaceutical quality by design. AAPS J. 2014;16(4):771–83. https://doi.org/10.1208/s12248-014-9598-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. FDA. Guidance for industry: PAT—a framework for innovative pharmaceutical development, manufacturing, and quality assurance. 2004.

    Google Scholar 

  7. Burggraeve A, Monteyne T, Vervaet C, Remon JP, De Beer T. Process analytical tools for monitoring, understanding, and control of pharmaceutical fluidized bed granulation: a review. Eur J Pharm Biopharm. 2013;83(1):2–15. https://doi.org/10.1016/j.ejpb.2012.09.008.

    Article  CAS  PubMed  Google Scholar 

  8. Chen Z, Lovett D, Morris J. Process analytical technologies and real time process control a review of some spectroscopic issues and challenges. J Process Control. 2011;21(10):1467–82. https://doi.org/10.1016/j.jprocont.2011.06.024.

    Article  CAS  Google Scholar 

  9. Markarian J. Process Analytical Technology and Process Control in Solid-Dosage Manufacturing. Pharma Technol. 2013;37(4).

  10. Wahl PR, Peter A, Wolfganga M, Khinast JG. How to measure coating thickness of tablets: method comparison of optical coherence tomography, near-infrared spectroscopy and weight-, height- and diameter gain. Eur J Pharm Biopharm. 2019;142:344–52.

    Article  CAS  Google Scholar 

  11. Guenard R, Thurau G. Implementation of process analytical technologies. In: Bakeev KA, editor. Process analytical technology. Chichester: John Wiley & Sons Ltd; 2010.

    Google Scholar 

  12. Buchana BR, Baxter MA, Chen TS, Qin XZ, Robinson PA. Use of near-infrared spectroscopy to evaluate an active in a film coated tablet. Pharm Res. 1996;13(4):616–21.

    Article  Google Scholar 

  13. Romer M, Heinamaki J, Strachan C, Sandler N, Yliruusi J. Prediction of tablet film-coating thickness using a rotating plate coating system and NIR spectroscopy. AAPS PharmSciTech. 2008;9(4):1047–53. https://doi.org/10.1208/s12249-008-9142-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee MJ, Seo DY, Lee HE, Wang IC, Kim WS, Jeong MY, et al. In line NIR quantification of film thickness on pharmaceutical pellets during a fluid bed coating process. Int J Pharm. 2011;403(1–2):66–72. https://doi.org/10.1016/j.ijpharm.2010.10.022.

    Article  CAS  PubMed  Google Scholar 

  15. Mohan S, Odani N, Hossain MN, Feng H, Li Y, Kato E, et al. Terahertz time of flight spectroscopy as a coating thickness reference method for partial least squares near infrared spectroscopy models. Anal Chem. 2020;92(5):3658–65. https://doi.org/10.1021/acs.analchem.9b04750.

    Article  CAS  PubMed  Google Scholar 

  16. Tabasi SH, Fahmy R, Bensley D, O'Brien C, Hoag SW. Quality by design, part II: application of NIR spectroscopy to monitor the coating process for a pharmaceutical sustained release product. J Pharm Sci. 2008;97(9):4052–66. https://doi.org/10.1002/jps.21307.

    Article  CAS  PubMed  Google Scholar 

  17. FDA. Guidance for industry: development and submission of near-infrared analytical procedures. 2015.

    Google Scholar 

  18. Bogomolov A, Engler M, Melichar M, Wigmore A. In-line analysis of a fluid bed pellet coating process using a combination of near infrared and Raman spectroscopy. J Chemom. 2010;24(7–8):544–57. https://doi.org/10.1002/cem.1329.

    Article  CAS  Google Scholar 

  19. Grangeia HB, Silva C, Simoes SP, Reis MS. Quality by design in pharmaceutical manufacturing: a systematic review of current status, challenges and future perspectives. Eur J Pharm Biopharm. 2020;147:19–37. https://doi.org/10.1016/j.ejpb.2019.12.007.

    Article  CAS  PubMed  Google Scholar 

  20. Kim JY, Kim DW, Kuk YM, Park CW, Rhee YS, Oh TO, et al. Investigation of an active film coating to prepare new fixed-dose combination tablets for treatment of diabetes. Int J Pharm. 2012;427(2):201–8. https://doi.org/10.1016/j.ijpharm.2012.01.057.

    Article  CAS  PubMed  Google Scholar 

  21. FDA. Guidance for industry: validation of analytical procedures: methodology. 1996.

    Google Scholar 

  22. Boque R, Larrechi MS, Rius FX. Multivariate detection limits with fixed probabilities of error. Chemometr Intell Lab. 1999;45:397–408.

    Article  CAS  Google Scholar 

  23. Feng H, Bondi RW Jr, Anderson CA, Drennen JK 3rd, Igne B. Investigation of the sensitivity of transmission Raman spectroscopy for polymorph detection in pharmaceutical tablets. Appl Spectrosc. 2017;71(8):1856–67. https://doi.org/10.1177/0003702817690407.

    Article  CAS  PubMed  Google Scholar 

  24. Reich G. Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications. Adv Drug Deliv Rev. 2005;57(8):1109–43. https://doi.org/10.1016/j.addr.2005.01.020.

    Article  CAS  PubMed  Google Scholar 

  25. Ingle JD, Crouch SR. Spectrochemical analysis. Upper Saddle River: Prentice-Hall; 1988.

    Google Scholar 

  26. Burns DM, Ciurczak EW. Handbook of near-infrared analysis. Cleveland: CRC Press; 2007.

    Book  Google Scholar 

  27. Vandeginste BGM, Massart DL, Buydens LMC, De Jong S, Lewi PJ, Smeyers-Verbeke J. Handbook of chemometrics and qualimetrics (part a). New York: Elsevier Science; 1997.

    Google Scholar 

  28. Vandeginste BGM, Massart DL, Buydens LMC, De Jong S, Lewi PJ, Smeyers-Verbeke J. Handbook of chemometrics and qualimetrics (part B). New York: Elsevier; 1998.

    Google Scholar 

  29. Wu W, Walczak B, Massart DL, Prebble KA, Last IR. Spectral transformation and wavelength selection in near-infrared spectra classification. Anal Chim Acta. 1995;315:243–55.

    Article  CAS  Google Scholar 

  30. Geladi P, MacDougall D, Martens H. Linearization and scatter-correction for near-infrared reflectance spectra of meat. Appl Spectrosc. 1985;39(3):491–500. https://doi.org/10.1366/0003702854248656.

    Article  Google Scholar 

  31. Isaksson T, Næs T. The effect of multiplicative scatter correction (MSC) and linearity improvement in NIR spectroscopy. Appl Spectrosc. 1988;42(7):1273–84.

    Article  CAS  Google Scholar 

  32. Ciurczak EW. Uses of near-infrared spectroscopy in pharmaceutical analysis. Appl Spectrosc Rev. 1987;23:147–63.

    Article  CAS  Google Scholar 

  33. Swinehart DF. The Beer-Lambert law. J Chem Educ. 1962;39(7):333–5.

    Article  CAS  Google Scholar 

  34. Roggo Y, Jent N, Edmond A, Chalus P, Ulmschneider M. Characterizing process effects on pharmaceutical solid forms using near-infrared spectroscopy and infrared imaging. Eur J Pharm Biopharm. 2005;61(1–2):100–10. https://doi.org/10.1016/j.ejpb.2005.04.005.

    Article  CAS  PubMed  Google Scholar 

  35. Odani N, Mohan S, Kato E, Feng H, Li Y, Nayeem Hossain M, et al. Determining the effect of photodegradation on film coated nifedipine tablets with terahertz based coating thickness measurements. Eur J Pharm Biopharm. 2019;145:35–41. https://doi.org/10.1016/j.ejpb.2019.09.024.

    Article  CAS  PubMed  Google Scholar 

  36. Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. J Am Chem Soc. 1897;19(12):930–4.

    Article  Google Scholar 

  37. Ozturk AG, Ozturk SS, Palsson BO, Wheatley TA, Dressman JB. Mechanism of release from pellets coated with an ethylcellulose-based film. J Control Release. 1990;14:203–13.

    Article  CAS  Google Scholar 

  38. Kirsch JD, Drennen JK. Determination of film-coated tablet parameters by near-infrared spectroscopy. J Pharm Biomed Anal. 1995;13:1273–81.

    Article  CAS  Google Scholar 

  39. Cahyadi C, Karande AD, Chan LW, Heng PW. Comparative study of non-destructive methods to quantify thickness of tablet coatings. Int J Pharm. 2010;398(1–2):39–49. https://doi.org/10.1016/j.ijpharm.2010.07.020.

    Article  CAS  PubMed  Google Scholar 

  40. Depypere F, Van Oostveldt P, Pieters JG, Dewettinck K. Quantification of microparticle coating quality by confocal laser scanning microscopy (CLSM). Eur J Pharm Biopharm. 2009;73(1):179–86. https://doi.org/10.1016/j.ejpb.2009.04.007.

    Article  CAS  PubMed  Google Scholar 

  41. Muselík J, Dvoracková K, Krejcová K, Rabisková M, Pazourek J, Marton S, et al. Pellet coating thickness determination by near-infrared reflectance. Curr Pharm Anal. 2010;6:225–33.

    Article  Google Scholar 

  42. Andersson M, Holmquist B, Lindquist J, Nilsson O, Wahlund K. Analysis of film coating thickness and surface area of pharmaceutical pellets using fluorescence microscopy and image analysis. J Pharm Biomed Anal. 2000;22:325–39.

    Article  CAS  Google Scholar 

  43. Ringqvist A, Taylor LS, Ekelund K, Ragnarsson G, Engstrom S, Axelsson A. Atomic force microscopy analysis and confocal Raman microimaging of coated pellets. Int J Pharm. 2003;267(1–2):35–47. https://doi.org/10.1016/j.ijpharm.2003.07.004.

    Article  CAS  PubMed  Google Scholar 

  44. Fitzgerald AJ, Cole BE, Taday PF. Nondestructive analysis of tablet coating thicknesses using terahertz pulsed imaging. J Pharm Sci. 2005;94(1):177–83. https://doi.org/10.1002/jps.20225.

    Article  CAS  PubMed  Google Scholar 

  45. John D, Kirsch JKD. Near-infrared spectroscopic monitoring of the film coating process. Pharm Res. 1996;13(2):234–7.

    Article  Google Scholar 

  46. Andersson M, Josefson M, Langkilde FW, Wahlund KG. Monitoring of a film coating process for tablets using near infrared reflectance spectrometry. J Pharm Biomed Anal. 1999;20:27–37.

    Article  CAS  Google Scholar 

  47. Avalle P, Pollitt MJ, Bradley K, Cooper B, Pearce G, Djemai A, et al. Development of process analytical technology (PAT) methods for controlled release pellet coating. Eur J Pharm Biopharm. 2014;87(2):244–51. https://doi.org/10.1016/j.ejpb.2014.01.008.

    Article  CAS  PubMed  Google Scholar 

  48. FDA. In: CDER, editor. Extended release oral dosage forms - development, evaluation, and application of in vitro in vivo correlations; 1997.

    Google Scholar 

  49. Hattori Y, Sugata M, Kamata H, Nagata M, Nagato T, Hasegawa K, et al. Real-time monitoring of the tablet-coating process by near-infrared spectroscopy - effects of coating polymer concentrations on pharmaceutical properties of tablets. J Drug Deliv Sci Technol. 2018;46:111–21. https://doi.org/10.1016/j.jddst.2018.04.018.

    Article  CAS  Google Scholar 

  50. Gendre C, Boiret M, Genty M, Chaminade P, Pean JM. Real-time predictions of drug release and end point detection of a coating operation by in-line near infrared measurements. Int J Pharm. 2011;421(2):237–43. https://doi.org/10.1016/j.ijpharm.2011.09.036.

    Article  CAS  PubMed  Google Scholar 

  51. Andersson M, Folestad S, Gottfries J, Johansson MO, Josefson M, Wahlund K. Quantitative analysis of film coating in a fluidized bed process by in-line NIR spectrometry and multivariate batch calibration. Anal Chem. 2000;72:2099–108.

    Article  CAS  Google Scholar 

  52. Markovic S, Poljanec K, Kerc J, Horvat M. In-line NIR monitoring of key characteristics of enteric coated pellets. Eur J Pharm Biopharm. 2014;88(3):847–55. https://doi.org/10.1016/j.ejpb.2014.10.003.

    Article  CAS  PubMed  Google Scholar 

  53. Gendre C, Genty M, Boiret M, Julien M, Meunier L, Lecoq O, et al. Development of a process analytical technology (PAT) for in-line monitoring of film thickness and mass of coating materials during a pan coating operation. Eur J Pharm Sci. 2011;43(4):244–50. https://doi.org/10.1016/j.ejps.2011.04.017.

    Article  CAS  PubMed  Google Scholar 

  54. Igne B, Arai H, Drennen JK, Anderson CA. Effect of sampling frequency for real-time tablet coating monitoring using near infrared spectroscopy. Appl Spectrosc. 2016;70(9):1476–88. https://doi.org/10.1177/0003702816662622.

    Article  CAS  PubMed  Google Scholar 

  55. Cogdill RP, Forcht RN, Shen Y, Taday PF, Creekmore JR, Anderson CA, et al. Comparison of terahertz pulse imaging and near-infrared spectroscopy for rapid, non-destructive analysis of tablet coating thickness and uniformity. J Pharm Innov. 2007;2(1–2):29–36. https://doi.org/10.1007/s12247-007-9004-0.

    Article  Google Scholar 

  56. Kato Y, Sasakura D, Miura T, Nagatomo A, Terada K. Evaluation of risk and benefit in the application of near-infrared spectroscopy to monitor the granule coating process. Pharm Dev Technol. 2008;13(3):205–11. https://doi.org/10.1080/10837450801949434.

    Article  CAS  PubMed  Google Scholar 

  57. Lewis EN, Schoppelrei J, Lee E. Near-infrared chemical imaging and the PAT initiative. Spectroscopy. 2004;19(4):26–35.

    CAS  Google Scholar 

  58. Moltgen CV, Puchert T, Menezes JC, Lochmann D, Reich G. A novel in-line NIR spectroscopy application for the monitoring of tablet film coating in an industrial scale process. Talanta. 2012;92:26–37. https://doi.org/10.1016/j.talanta.2011.12.034.

    Article  CAS  PubMed  Google Scholar 

  59. Maurer L, Leuenberger H. Terahertz pulsed imaging and near infrared imaging to monitor the coating process of pharmaceutical tablets. Int J Pharm. 2009;370(1–2):8–16. https://doi.org/10.1016/j.ijpharm.2008.11.011.

    Article  CAS  PubMed  Google Scholar 

  60. Sabin GP, Breitkreitz MC, de Souza AM, da Fonseca P, Calefe L, Moffa M, et al. Analysis of pharmaceutical pellets: an approach using near-infrared chemical imaging. Anal Chim Acta. 2011;706(1):113–9. https://doi.org/10.1016/j.aca.2011.08.029.

    Article  CAS  PubMed  Google Scholar 

  61. Saeed M, Probst L, Betz G. Assessment of diffuse transmission and reflection modes in near-infrared quantification, part 2: DIFFuse reflection information depth. J Pharm Sci. 2010;100(3):1130–41. https://doi.org/10.1002/jps.22344.

    Article  CAS  PubMed  Google Scholar 

  62. Gendre C, Genty M, da Silva JC, Tfayli A, Boiret M, Lecoq O, et al. Comprehensive study of dynamic curing effect on tablet coating structure. Eur J Pharm Biopharm. 2012;81(3):657–65. https://doi.org/10.1016/j.ejpb.2012.04.006.

    Article  CAS  PubMed  Google Scholar 

  63. Gendre C, Genty M, Fayard B, Tfayli A, Boiret M, Lecoq O, et al. Comparative static curing versus dynamic curing on tablet coating structures. Int J Pharm. 2013;453(2):448–53. https://doi.org/10.1016/j.ijpharm.2013.06.008.

    Article  CAS  PubMed  Google Scholar 

  64. Moltgen CV, Herdling T, Reich G. A novel multivariate approach using science-based calibration for direct coating thickness determination in real-time NIR process monitoring. Eur J Pharm Biopharm. 2013;85(3 Pt B):1056–63. https://doi.org/10.1016/j.ejpb.2013.09.011.

    Article  CAS  PubMed  Google Scholar 

  65. Ozawa T, Yokoyama M, Hosono T, Nagato T, Tahara K, Takeuchi H. A novel approach to monitor coating amount by short-wavelength near-infrared spectroscopy using a tracer with a long-chain hydrocarbyl group. Int J Pharm. 2013;458(1):9–14. https://doi.org/10.1016/j.ijpharm.2013.10.015.

    Article  CAS  PubMed  Google Scholar 

  66. Hudovornik G, Korasa K, Vrecer F. A study on the applicability of in-line measurements in the monitoring of the pellet coating process. Eur J Pharm Sci. 2015;75:160–8. https://doi.org/10.1016/j.ejps.2015.04.007.

    Article  CAS  PubMed  Google Scholar 

  67. Korasa K, Hudovornik G, Vrecer F. Applicability of near-infrared spectroscopy in the monitoring of film coating and curing process of the prolonged release coated pellets. Eur J Pharm Sci. 2016;93:484–92. https://doi.org/10.1016/j.ejps.2016.08.038.

    Article  CAS  PubMed  Google Scholar 

  68. Ariyasu A, Hattori Y, Otsuka M. Non-destructive prediction of enteric coating layer thickness and drug dissolution rate by near-infrared spectroscopy and X-ray computed tomography. Int J Pharm. 2017;525(1):282–90. https://doi.org/10.1016/j.ijpharm.2017.04.017.

    Article  CAS  PubMed  Google Scholar 

  69. Korasa K, Vrecer F. A study on the applicability of multiple process analysers in the production of coated pellets. Int J Pharm. 2019;560:261–72. https://doi.org/10.1016/j.ijpharm.2019.01.069.

    Article  CAS  PubMed  Google Scholar 

  70. Santos Silva B, Colbert MJ, Santangelo M, Bartlett JA, Lapointe-Garant PP, Simard JS, et al. Monitoring microsphere coating processes using PAT tools in a bench scale fluid bed. Eur J Pharm Sci. 2019;135:12–21. https://doi.org/10.1016/j.ejps.2019.05.003.

    Article  CAS  PubMed  Google Scholar 

  71. Das RS, Agrawal YK. Raman spectroscopy: recent advancements, techniques and applications. Vib Spectrosc. 2011;57(2):163–76. https://doi.org/10.1016/j.vibspec.2011.08.003.

    Article  CAS  Google Scholar 

  72. Willard HH, Merritt LL, Dean JA, Settle FA. Instrumental methods of analysis. New Delhi: CBS Publishers; 1988.

    Google Scholar 

  73. Strasburg GM, Ludescher RD. Theory and applications of fluorescence spectroscopy in food research. Trends Food Sci Technol. 1995;6(3):69–75.

    Article  CAS  Google Scholar 

  74. Romero-Torres S, Perez-Ramos JD, Morris KR, Grant ER. Raman spectroscopy for tablet coating thickness quantification and coating characterization in the presence of strong fluorescent interference. J Pharm Biomed Anal. 2006;41(3):811–9. https://doi.org/10.1016/j.jpba.2006.01.033.

    Article  CAS  PubMed  Google Scholar 

  75. Romero-Torres S, Perez-Ramos JD, Morris KR, Grant ER. Raman spectroscopic measurement of tablet-to-tablet coating variability. J Pharm Biomed Anal. 2005;38(2):270–4. https://doi.org/10.1016/j.jpba.2005.01.007.

    Article  CAS  PubMed  Google Scholar 

  76. Zhao J, Lui H, McLean DI, Zeng H. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy. Appl Spectrosc. 2007;61(11):1225–32.

    Article  CAS  Google Scholar 

  77. Lieber C, Mahadevan-Jansen A. Automated method for subtraction of fluorescence from biological Raman spectra. Appl Spectrosc. 2003;57(11):1363–7. https://doi.org/10.1366/000370203322554518.

    Article  CAS  PubMed  Google Scholar 

  78. Mazet V, Carteret C, Brie D, Idier J, Humbert B. Background removal from spectra by designing and minimising a non-quadratic cost function. Chemom Intell Lab Syst. 2005;76(2):121–33. https://doi.org/10.1016/j.chemolab.2004.10.003.

    Article  CAS  Google Scholar 

  79. Galloway CM, Le Rum EC, Etchegoin PG. An iterative algorithm for background removal in spectroscopy. Appl Spectrosc. 2009;63(12):1370–6.

    Article  CAS  Google Scholar 

  80. Hu Y, Jiang T, Shen A, Li W, Wang X, Hu J. A background elimination method based on wavelet transform for Raman spectra. Chemom Intell Lab Syst. 2007;85(1):94–101. https://doi.org/10.1016/j.chemolab.2006.05.004.

    Article  CAS  Google Scholar 

  81. Ramos PM, Ruisánchez I. Noise and background removal in Raman spectra of ancient pigments using wavelet transform. J Raman Spectrosc. 2005;36(9):848–56. https://doi.org/10.1002/jrs.1370.

    Article  CAS  Google Scholar 

  82. O’Grady A, Dennis AC, Denvir D, McGarvey JJ, Bell SEJ. Quantitative Raman spectroscopy of highly fluorescent samples using pseudosecond derivatives and multivariate analysis. Anal Chem. 2001;73:2058–65.

    Article  Google Scholar 

  83. Leger MN, Ryder AG. Comparison of derivative preprocessing and automated polynomial baseline correction method for classification and quantification of narcotics in solid mixtures. Appl Spectrosc. 2006;60(2):182–93.

    Article  CAS  Google Scholar 

  84. Kauffman JF, Dellibovi M, Cunningham CR. Raman spectroscopy of coated pharmaceutical tablets and physical models for multivariate calibration to tablet coating thickness. J Pharm Biomed Anal. 2007;43(1):39–48. https://doi.org/10.1016/j.jpba.2006.06.017.

    Article  CAS  PubMed  Google Scholar 

  85. Macdonald AM, Wyeth P. On the use of photobleaching to reduce fluorescence background in Raman spectroscopy to improve the reliability of pigment identification on painted textiles. J Raman Spectrosc. 2006;37(8):830–5. https://doi.org/10.1002/jrs.1510.

    Article  CAS  Google Scholar 

  86. Kim B, Woo YA. Coating process optimization through in-line monitoring for coating weight gain using Raman spectroscopy and design of experiments. J Pharm Biomed Anal. 2018;154:278–84. https://doi.org/10.1016/j.jpba.2018.03.001.

    Article  CAS  PubMed  Google Scholar 

  87. Barimani S, Kleinebudde P. Monitoring of tablet coating processes with colored coatings. Talanta. 2018;178:686–97. https://doi.org/10.1016/j.talanta.2017.10.008.

    Article  CAS  PubMed  Google Scholar 

  88. Muller J, Brock D, Knop K, Axel Zeitler J, Kleinebudde P. Prediction of dissolution time and coating thickness of sustained release formulations using Raman spectroscopy and terahertz pulsed imaging. Eur J Pharm Biopharm. 2012;80(3):690–7. https://doi.org/10.1016/j.ejpb.2011.12.003.

    Article  CAS  PubMed  Google Scholar 

  89. Muller J, Knop K, Wirges M, Kleinebudde P. Validation of Raman spectroscopic procedures in agreement with ICH guideline Q2 with considering the transfer to real time monitoring of an active coating process. J Pharm Biomed Anal. 2010;53(4):884–94. https://doi.org/10.1016/j.jpba.2010.06.016.

    Article  CAS  PubMed  Google Scholar 

  90. Wirges M, Funke A, Serno P, Knop K, Kleinebudde P. Monitoring of an active coating process for two-layer tablets-model development strategies. J Pharm Sci. 2013;102(2):556–64. https://doi.org/10.1002/jps.23383.

    Article  CAS  PubMed  Google Scholar 

  91. Ensslin S, Moll KP, Haefele-Racin T, Mader K. Safety and robustness of coated pellets: self-healing film properties and storage stability. Pharm Res. 2009;26(6):1534–43. https://doi.org/10.1007/s11095-009-9866-6.

    Article  CAS  PubMed  Google Scholar 

  92. Vogt FG, Strohmeier M. Confocal UV and resonance Raman microscopic imaging of pharmaceutical products. Mol Pharm. 2013;10(11):4216–28. https://doi.org/10.1021/mp400314s.

    Article  CAS  PubMed  Google Scholar 

  93. Barimani S, Kleinebudde P. Evaluation of in-line Raman data for end-point determination of a coating process: comparison of science-based calibration, PLS-regression and univariate data analysis. Eur J Pharm Biopharm. 2017;119:28–35. https://doi.org/10.1016/j.ejpb.2017.05.011.

    Article  CAS  PubMed  Google Scholar 

  94. Song SW, Kim J, Eum C, Cho Y, Park CR, Woo YA, et al. Hyperspectral Raman line mapping as an effective tool to monitor the coating thickness of pharmaceutical tablets. Anal Chem. 2019;91(9):5810–6. https://doi.org/10.1021/acs.analchem.9b00047.

    Article  CAS  PubMed  Google Scholar 

  95. Kindt JT, Schmuttenmaer CA. Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy. J Phys Chem. 1996;100:10373–9.

    Article  CAS  Google Scholar 

  96. Taday PF. Applications of terahertz spectroscopy to pharmaceutical sciences. Philos Trans A Math Phys Eng Sci. 2004;362(1815):351–63. https://doi.org/10.1098/rsta.2003.1321.

    Article  CAS  PubMed  Google Scholar 

  97. Walther M, Fischer BM, Jepsen PU. Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared. Chem Phys. 2003;288(2–3):261–8. https://doi.org/10.1016/s0301-0104(03)00031-4.

    Article  CAS  Google Scholar 

  98. Shen YC, Upadhya PC, Linfield EH, Davies AG. Temperature-dependent low-frequency vibrational spectra of purine and adenine. Appl Phys Lett. 2003;82(14):2350–2. https://doi.org/10.1063/1.1565680.

    Article  CAS  Google Scholar 

  99. Shen YC. Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review. Int J Pharm. 2011;417(1–2):48–60. https://doi.org/10.1016/j.ijpharm.2011.01.012.

    Article  CAS  PubMed  Google Scholar 

  100. Smith RM, Arnold MA. Terahertz time-domain spectroscopy of solid samples: principles, applications, and challenges. Appl Spectrosc Rev. 2011;46(8):636–79. https://doi.org/10.1080/05704928.2011.614305.

    Article  Google Scholar 

  101. Lu LQ, Shur MS, Hesler JL, Sun L, Weikle R. Terahertz detector utilizing 2D electronic fluid. IEEE Electron Device Lett. 1998;19(10):373–5.

    Article  Google Scholar 

  102. Haaser M, Gordon KC, Strachan CJ, Rades T. Terahertz pulsed imaging as an advanced characterisation tool for film coatings--a review. Int J Pharm. 2013;457(2):510–20. https://doi.org/10.1016/j.ijpharm.2013.03.053.

    Article  CAS  PubMed  Google Scholar 

  103. Ho L, Muller R, Romer M, Gordon KC, Heinamaki J, Kleinebudde P, et al. Analysis of sustained-release tablet film coats using terahertz pulsed imaging. J Control Release. 2007;119(3):253–61. https://doi.org/10.1016/j.jconrel.2007.03.011.

    Article  CAS  PubMed  Google Scholar 

  104. Ho L, Muller R, Gordon KC, Kleinebudde P, Pepper M, Rades T, et al. Applications of terahertz pulsed imaging to sustained-release tablet film coating quality assessment and dissolution performance. J Control Release. 2008;127(1):79–87. https://doi.org/10.1016/j.jconrel.2008.01.002.

    Article  CAS  PubMed  Google Scholar 

  105. Russe IS, Brock D, Knop K, Kleinebudde P, Zeitler JA. Validation of terahertz coating thickness measurements using X-ray microtomography. Mol Pharm. 2012;9(12):3551–9. https://doi.org/10.1021/mp300383y.

    Article  CAS  PubMed  Google Scholar 

  106. Zeitler JA, Shen Y, Baker C, Taday PF, Pepper M, Rades T. Analysis of coating structures and interfaces in solid oral dosage forms by three dimensional terahertz pulsed imaging. J Pharm Sci. 2007;96(2):330–40. https://doi.org/10.1002/jps.20789.

    Article  CAS  PubMed  Google Scholar 

  107. Malaterre V, Pedersen M, Ogorka J, Gurny R, Loggia N, Taday PF. Terahertz pulsed imaging, a novel process analytical tool to investigate the coating characteristics of push-pull osmotic systems. Eur J Pharm Biopharm. 2010;74(1):21–5. https://doi.org/10.1016/j.ejpb.2008.10.011.

    Article  CAS  PubMed  Google Scholar 

  108. Ho L, Cuppok Y, Muschert S, Gordon KC, Pepper M, Shen Y, et al. Effects of film coating thickness and drug layer uniformity on in vitro drug release from sustained-release coated pellets: a case study using terahertz pulsed imaging. Int J Pharm. 2009;382(1–2):151–9. https://doi.org/10.1016/j.ijpharm.2009.08.025.

    Article  CAS  PubMed  Google Scholar 

  109. Haaser M, Karrout Y, Velghe C, Cuppok Y, Gordon KC, Pepper M, et al. Application of terahertz pulsed imaging to analyse film coating characteristics of sustained-release coated pellets. Int J Pharm. 2013;457(2):521–6. https://doi.org/10.1016/j.ijpharm.2013.05.039.

    Article  CAS  PubMed  Google Scholar 

  110. Chan WL, Deibel J, Mittleman DM. Imaging with terahertz radiation. Rep Prog Phys. 2007;70(8):1325–79. https://doi.org/10.1088/0034-4885/70/8/r02.

    Article  Google Scholar 

  111. May RK, Evans MJ, Zhong S, Warr I, Gladden LF, Shen Y, et al. Terahertz in-line sensor for direct coating thickness measurement of individual tablets during film coating in real-time. J Pharm Sci. 2011;100(4):1535–44. https://doi.org/10.1002/jps.22359.

    Article  CAS  PubMed  Google Scholar 

  112. Pei C, Lin H, Markl D, Shen YC, Zeitler JA, Elliott JA. A quantitative comparison of in-line coating thickness distributions obtained from a pharmaceutical tablet mixing process using discrete element method and terahertz pulsed imaging. Chem Eng Sci. 2018;192:34–45. https://doi.org/10.1016/j.ces.2018.06.045.

    Article  CAS  Google Scholar 

  113. Spencer JA, Gao Z, Moore T, Buhse LF, Taday PF, Newnham DA, et al. Delayed release tablet dissolution related to coating thickness by terahertz pulsed image mapping. J Pharm Sci. 2008;97(4):1543–50. https://doi.org/10.1002/jps.21051.

    Article  CAS  PubMed  Google Scholar 

  114. Ho L, Muller R, Gordon KC, Kleinebudde P, Pepper M, Rades T, et al. Terahertz pulsed imaging as an analytical tool for sustained-release tablet film coating. Eur J Pharm Biopharm. 2009;71(1):117–23. https://doi.org/10.1016/j.ejpb.2008.06.023.

    Article  CAS  PubMed  Google Scholar 

  115. Ho L, Muller R, Gordon KC, Kleinebudde P, Pepper M, Rades T, et al. Monitoring the film coating unit operation and predicting drug dissolution using terahertz pulsed imaging. J Pharm Sci. 2009;98(12):4866–76. https://doi.org/10.1002/jps.21766.

    Article  CAS  PubMed  Google Scholar 

  116. Brock D, Zeitler JA, Funke A, Knop K, Kleinebudde P. A comparison of quality control methods for active coating processes. Int J Pharm. 2012;439(1–2):289–95. https://doi.org/10.1016/j.ijpharm.2012.09.021.

    Article  CAS  PubMed  Google Scholar 

  117. Momose W, Yoshino H, Katakawa Y, Yamashita K, Imai K, Sako K, et al. Applying terahertz technology for nondestructive detection of crack initiation in a film-coated layer on a swelling tablet. Results Pharma Sci. 2012;2:29–37. https://doi.org/10.1016/j.rinphs.2012.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Brock D, Zeitler JA, Funke A, Knop K, Kleinebudde P. Evaluation of critical process parameters for intra-tablet coating uniformity using terahertz pulsed imaging. Eur J Pharm Biopharm. 2013;85(3 Pt B):1122–9. https://doi.org/10.1016/j.ejpb.2013.07.004.

    Article  CAS  PubMed  Google Scholar 

  119. Brock D, Zeitler JA, Funke A, Knop K, Kleinebudde P. Critical factors in the measurement of tablet film coatings using terahertz pulsed imaging. J Pharm Sci. 2013;102(6):1813–24. https://doi.org/10.1002/jps.23521.

    Article  CAS  PubMed  Google Scholar 

  120. Haaser M, Naelapaa K, Gordon KC, Pepper M, Rantanen J, Strachan CJ, et al. Evaluating the effect of coating equipment on tablet film quality using terahertz pulsed imaging. Eur J Pharm Biopharm. 2013;85(3 Pt B):1095–102. https://doi.org/10.1016/j.ejpb.2013.03.019.

    Article  CAS  PubMed  Google Scholar 

  121. Niwa M, Hiraishi Y. Quantitative analysis of visible surface defect risk in tablets during film coating using terahertz pulsed imaging. Int J Pharm. 2014;461(1–2):342–50. https://doi.org/10.1016/j.ijpharm.2013.11.051.

    Article  CAS  PubMed  Google Scholar 

  122. Niwa M, Hiraishi Y, Terada K. Evaluation of coating properties of enteric-coated tablets using terahertz pulsed imaging. Pharm Res. 2014;31(8):2140–51. https://doi.org/10.1007/s11095-014-1314-6.

    Article  CAS  PubMed  Google Scholar 

  123. Novikova A, Carstensen JM, Zeitler JA, Rades T, Leopold CS. Multispectral UV imaging for determination of the tablet coating thickness. J Pharm Sci. 2017;106(6):1560–9. https://doi.org/10.1016/j.xphs.2017.02.016.

    Article  CAS  PubMed  Google Scholar 

  124. Mauritz JM, Morrisby RS, Hutton RS, Legge CH, Kaminski CF. Imaging pharmaceutical tablets with optical coherence tomography. J Pharm Sci. 2010;99(1):385–91. https://doi.org/10.1002/jps.21844.

    Article  CAS  PubMed  Google Scholar 

  125. Zhong S, Shen YC, Ho L, May RK, Zeitler JA, Evans M, et al. Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography. Opt Lasers Eng. 2011;49(3):361–5. https://doi.org/10.1016/j.optlaseng.2010.11.003.

    Article  Google Scholar 

  126. Li C, Zeitler JA, Dong Y, Shen YC. Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography. J Pharm Sci. 2014;103(1):161–6. https://doi.org/10.1002/jps.23764.

    Article  CAS  PubMed  Google Scholar 

  127. Markl D, Hannesschlager G, Sacher S, Leitner M, Buchsbaum A, Pescod R, et al. In-line monitoring of a pharmaceutical Pan coating process by optical coherence tomography. J Pharm Sci. 2015;104(8):2531–40. https://doi.org/10.1002/jps.24531.

    Article  CAS  PubMed  Google Scholar 

  128. Sacher S, Wahl P, Weissensteiner M, Wolfgang M, Pokhilchuk Y, Looser B, et al. Shedding light on coatings: real-time monitoring of coating quality at industrial scale. Int J Pharm. 2019;566:57–66. https://doi.org/10.1016/j.ijpharm.2019.05.048.

    Article  CAS  PubMed  Google Scholar 

  129. Naelapaa K, Veski P, Pedersen JG, Anov D, Jorgensen P, Kristensen HG, et al. Acoustic monitoring of a fluidized bed coating process. Int J Pharm. 2007;332(1–2):90–7. https://doi.org/10.1016/j.ijpharm.2006.09.036.

    Article  CAS  PubMed  Google Scholar 

  130. Bikiaris D, Koutri I, Alexiadis D, Damtsios A, Karagiannis G. Real time and non-destructive analysis of tablet coating thickness using acoustic microscopy and infrared diffuse reflectance spectroscopy. Int J Pharm. 2012;438(1–2):33–44. https://doi.org/10.1016/j.ijpharm.2012.08.056.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanzhou Feng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, H., Mohan, S. Application of Process Analytical Technology for Pharmaceutical Coating: Challenges, Pitfalls, and Trends. AAPS PharmSciTech 21, 179 (2020). https://doi.org/10.1208/s12249-020-01727-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01727-8

KEY WORDS

Navigation