Skip to main content

Advertisement

Log in

Proniosomal Microcarriers: Impact of Constituents on the Physicochemical Properties of Proniosomes as a New Approach to Enhance Inhalation Efficiency of Dry Powder Inhalers

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Proniosomes are free-flowing systems with coating carriers, which developed as a method for improving the drug flow and pulmonary delivery. Extensive research on proniosomes was done to enhance the dry powder inhalers (DPI)’s inhalation performance. This research aimed at studying the impact of lactose-mannitol mixture additives on the proniosome’s physicochemical properties as a method for improving the inhalation efficiency of DPI. Vismodegib has been employed as a compound model. Box–Behnken design has been employed to prepare different proniosomes formulae by incorporating various (A) span 60 concentrations, (B) lactose concentrations and (C) mannitol: total carrier mixture. The measured responses were vesicle size (R1), %release (R2), Carr’s index (R3) and %recovery (R4). The results displayed that R1 and R4 were significantly antagonistic to C and significantly synergistic to both A and B while R2 and R3 were significantly synergistic to C and significantly antagonistic to both A and B. The optimal formula was selected for its aerodynamic behaviour, cytotoxic activity and bioavailability assessment. The optimal formula resulted in better Vismodegib lung deposition, cytotoxic activity and relative bioavailability. This novel formula could be a promising carrier for sustained delivery of drugs via the pulmonary route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DPIs:

Dry powder inhalers

%EE:

Percentage of entrapment efficiency

R2 :

correlation coefficients

Di:

Desirability index

DSC:

Differential scanning calorimetry

TEM:

Transmission electron microscopy

span 60:

sorbitan monostearate

CI:

Carr’s index

IC50:

50% cell viability

MMAD:

Median mass aerodynamic diameter

Cp max :

The maximum drug concentration in plasma

T max :

Time to reach the maximum drug concentration in plasma

t1/2 :

Time to reach half the drug concentration in plasma

K:

Elimination rate constant

MRT:

Mean residence time

AUC:

The area under the curve

References

  1. Peng T, Lin S, Niu B, Wang X, Huang Y, Zhang X, et al. Influence of physical properties of carrier on the performance of dry powder inhalers. Acta Pharm Sin B. 2016;6(4):308–18.

    PubMed  PubMed Central  Google Scholar 

  2. Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010;392(1–2):1–19.

    CAS  PubMed  Google Scholar 

  3. Newman S. Metered dose pressurized aerosols and the ozone layer. Eur Respir J. 1990;3(5):495–7.

    CAS  PubMed  Google Scholar 

  4. Kaialy W, Larhrib H, Martin GP, Nokhodchi A. The effect of engineered mannitol-lactose mixture on dry powder inhaler performance. Pharm Res. 2012;29(8):2139–56.

    CAS  PubMed  Google Scholar 

  5. Rahimpour Y, Hamishehkar H. Lactose engineering for better performance in dry powder inhalers. Adv Pharm Bull. 2012;2(2):183–7.

    PubMed  PubMed Central  Google Scholar 

  6. Ravaghi M, Sinico C, Razavi SH, Mousavi SM, Pini E, Fadda AM. Proniosomal powders of natural canthaxanthin: preparation and characterization. Food Chem. 2017;220:233–41.

    CAS  PubMed  Google Scholar 

  7. Sankar V, Ruckmani K, Durga S, Jailani S. Proniosomes as drug carriers. Pak J Pharm Sci. 2010;23(1):103–7.

    CAS  PubMed  Google Scholar 

  8. Sohail MF, et al. Development and evaluation of optimized thiolated chitosan proniosomal gel containing duloxetine for intranasal delivery. AAPS PharmSciTech. 2019;20(7):288.

    PubMed  Google Scholar 

  9. Blazek-Welsh AI, Rhodes DG. Maltodextrin-based proniosomes. AAPS PharmSciTech. 2001;3(1):1–8.

    Google Scholar 

  10. Hu C, Rhodes DG. Proniosomes: a novel drug carrier preparation. Int J Pharm. 1999;185(1):23–35.

    CAS  PubMed  Google Scholar 

  11. Solanki AB, Parikh JR, Parikh RH. Formulation and optimization of piroxicam proniosomes by 3-factor, 3-level Box-Behnken design. AAPS PharmSciTech. 2007;8(4):43.

    PubMed Central  Google Scholar 

  12. Khatoon M, Shah KU, Din FU, Shah SU, Rehman AU, Dilawar N, et al. Proniosomes derived niosomes: recent advancements in drug delivery and targeting. Drug Delivery. 2017;24(2):56–69.

    CAS  PubMed  Google Scholar 

  13. Steckel H, Bolzen N. Alternative sugars as potential carriers for dry powder inhalations. Int J Pharm. 2004;270(1–2):297–306.

    CAS  PubMed  Google Scholar 

  14. Kaialy W, Martin GP, Larhrib H, Ticehurst MD, Kolosionek E, Nokhodchi A. The influence of physical properties and morphology of crystallised lactose on delivery of salbutamol sulphate from dry powder inhalers. Colloids Surf B: Biointerfaces. 2012;89:29–39.

    CAS  PubMed  Google Scholar 

  15. Marriott C, Frijlink HW. Lactose as a carrier for inhalation products: breathing new life into an old carrier. Preface. Adv Drug Deliv Rev. 2012;64(3):217.

    CAS  PubMed  Google Scholar 

  16. Vora B, Khopade AJ, Jain N. Proniosome based transdermal delivery of levonorgestrel for effective contraception. J Control Release. 1998;54(2):149–65.

    CAS  PubMed  Google Scholar 

  17. Kharshoum RM, et al. Control of basal cell carcinoma via positively charged ethosomes of Vismodegib: in vitro and in vivo studies. J Drug Deliv Sci Tech. 2020:101556.

  18. Abdelbary A, Salem HF, Khallaf RA, Ali AMA. Mucoadhesive niosomal in situ gel for ocular tissue targeting: in vitro and in vivo evaluation of lomefloxacin hydrochloride. Pharm Dev Technol. 2017;22(3):409–17.

    CAS  PubMed  Google Scholar 

  19. Sayed OM, et al. Treatment of basal cell carcinoma via binary Ethosomes of Vismodegib: in vitro and in vivo studies. AAPS PharmSciTech. 2020;21(2):51.

    PubMed  Google Scholar 

  20. Salem HF, Kharshoum RM, Abo el-Ela FI, F AG, Abdellatif KRA. Evaluation and optimization of pH-responsive niosomes as a carrier for efficient treatment of breast cancer. Drug Deliv Transl Res. 2018;8(3):633–44.

    CAS  PubMed  Google Scholar 

  21. Bakhtiary Z, Barar J, Aghanejad A, Saei AA, Nemati E, Ezzati Nazhad Dolatabadi J, et al. Microparticles containing erlotinib-loaded solid lipid nanoparticles for treatment of non-small cell lung cancer. Drug Dev Ind Pharm. 2017;43(8):1244–53.

    CAS  PubMed  Google Scholar 

  22. Salem H, et al. Nanosized rods agglomerates as a new approach for formulation of a dry powder inhaler. Int J Nanomedicine. 2011;6:311.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Salem HF, Kharshoum RM, Gamal F. A, Abo el-Ela FI, Abdellatif KRA. Treatment of breast cancer with engineered novel pH-sensitive Triaryl-(Z)-olefin niosomes containing hydrogel: an in vitro and in vivo study. J Liposome Res. 2019:1–10.

  24. Salem HF, Ahmed SM, Omar MM. Liposomal flucytosine capped with gold nanoparticle formulations for improved ocular delivery. Drug Des Dev Ther. 2016;10:277.

    CAS  Google Scholar 

  25. Hamzawy MA, Abo-youssef AM, Salem HF, Mohammed SA. Antitumor activity of intratracheal inhalation of temozolomide (TMZ) loaded into gold nanoparticles and/or liposomes against urethane-induced lung cancer in BALB/c mice. Drug Delivery. 2017;24(1):599–607.

    CAS  PubMed  Google Scholar 

  26. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Institute. 1990;82(13):1107–12.

    CAS  Google Scholar 

  27. Eskandani M, Hamishehkar H, Dolatabadi JEN. Cytotoxicity and DNA damage properties of tert-butylhydroquinone (TBHQ) food additive. Food Chem. 2014;153:315–20.

    CAS  PubMed  Google Scholar 

  28. Osama H, Sayed OM, Hussein RRS, Abdelrahim M, A. Elberry A. Design, optimization, characterization, and in vivo evaluation of sterosomes as a carrier of metformin for treatment of lung cancer. J Liposome Res. 2019:1–13.

  29. Bivas-Benita M, et al. Non-invasive pulmonary aerosol delivery in mice by the endotracheal route. Eur J Pharm Biopharm. 2005;61(3):214–8.

    CAS  PubMed  Google Scholar 

  30. Pulusu V, Kommarajula P. Development and validation of a new chromatographic method for the estimation of Vismodegib by RP-HPLC. J Chromatogr Sep Tech. 2019;10(421):2.

    Google Scholar 

  31. Ammar H, et al. In vitro and in vivo investigation for optimization of niosomal ability for sustainment and bioavailability enhancement of diltiazem after nasal administration. Drug Delivery. 2017;24(1):414–21.

    CAS  PubMed  Google Scholar 

  32. El-Tantawy WH, Salem HF, Safwat NAM. Effect of fascioliasis on the pharmacokinetic parameters of triclabendazole in human subjects. Pharm World Sci. 2007;29(3):190–98.

  33. Sezgin-Bayindir Z, Onay-Besikci A, Vural N, Yuksel N. Niosomes encapsulating paclitaxel for oral bioavailability enhancement: preparation, characterization, pharmacokinetics and biodistribution. J Microencapsul. 2013;30(8):796–804.

    CAS  PubMed  Google Scholar 

  34. Lillie, R.D., Histopathologic technic and practical histochemistry. 1947: Blakiston; New York.

  35. Kaialy W, Ticehurst M, Nokhodchi A. Dry powder inhalers: mechanistic evaluation of lactose formulations containing salbutamol sulphate. Int J Pharm. 2012;423(2):184–94.

    CAS  PubMed  Google Scholar 

  36. Young PM, Traini D, Coates M, Chan HK. Recent advances in understanding the influence of composite-formulation properties on the performance of dry powder inhalers. Phys B Condens Matter. 2007;394(2):315–9.

    CAS  Google Scholar 

  37. Abd-Elbary A, El-Laithy H, Tadros M. Sucrose stearate-based proniosome-derived niosomes for the nebulisable delivery of cromolyn sodium. Int J Pharm. 2008;357(1–2):189–98.

    CAS  PubMed  Google Scholar 

  38. Ravouru N, Kondreddy P, Korakanchi D. Formulation and evaluation of niosomal nasal drug delivery system of folic acid for brain targeting. Curr Drug Discov Technol. 2013;10(4):270–82.

    CAS  PubMed  Google Scholar 

  39. Salem HF, et al. Evaluation and optimization of pH-responsive niosomes as a carrier for efficient treatment of breast cancer. Drug Deliv Transl Res. 2018:1–12.

  40. Solanki A, Parikh J, Parikh R. Preparation, characterization, optimization, and stability studies of aceclofenac proniosomes. Iran J Pharm Res. 2010:237–46.

  41. El-Gendy N, Aillon KL, Berkland C. Dry powdered aerosols of diatrizoic acid nanoparticle agglomerates as a lung contrast agent. Int J Pharm. 2010;391(1–2):305–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Prescott JK, Barnum RA. On powder flowability. Pharm Technol. 2000;24(10):60–85.

    CAS  Google Scholar 

  43. Yuksel N, Bayindir ZS, Aksakal E, Ozcelikay AT. In situ niosome forming maltodextrin proniosomes of candesartan cilexetil: in vitro and in vivo evaluations. Int J Biol Macromol. 2016;82:453–63.

    CAS  PubMed  Google Scholar 

  44. Gupta R, Vanbever R, Mintzes J, Nice J, Chen D, Batycky R, et al. Physical characterization of large porous particles for inhalation. Pharm Res. 2000;17(11):1437–8.

    CAS  PubMed  Google Scholar 

  45. Vanbever R, Mintzes JD, Wang J, Nice J, Chen D, Batycky R, et al. Formulation and physical characterization of large porous particles for inhalation. Pharm Res. 1999;16(11):1735–42.

    CAS  PubMed  Google Scholar 

  46. Plumley C, Gorman EM, el-Gendy N, Bybee CR, Munson EJ, Berkland C. Nifedipine nanoparticle agglomeration as a dry powder aerosol formulation strategy. Int J Pharm. 2009;369(1–2):136–43.

    CAS  PubMed  Google Scholar 

  47. Shamil S, Birch G, Njoroge S. Intrinsic viscosities and other solution properties of sugars and their possible relation to sweetness. Chem Senses. 1988;13(3):457–61.

    CAS  Google Scholar 

  48. Sandeep K. Span-60 niosomal oral suspension of fluconazole: formulation and in vitro evaluation. AJPRHC. 2009;1(2).

  49. Zijlstra GS, Rijkeboer M, van Drooge DJ, Sutter M, Jiskoot W, van de Weert M, et al. Characterization of a cyclosporine solid dispersion for inhalation. AAPS J. 2007;9(2):E190–9.

    PubMed  PubMed Central  Google Scholar 

  50. Newman SP. Aerosol deposition considerations in inhalation therapy. Chest. 1985;88(2):152S–60S.

    CAS  PubMed  Google Scholar 

  51. Huang M, Ma Z, Khor E, Lim LY. Uptake of FITC-chitosan nanoparticles by A549 cells. Pharm Res. 2002;19(10):1488–94.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the staff members of the Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Egypt, for their support for the aerodynamic characterization measurements.

Statement of Human and Animal Rights

This article does not contain any studies with human and animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba F. Salem.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamal, A., Saeed, H., Sayed, O.M. et al. Proniosomal Microcarriers: Impact of Constituents on the Physicochemical Properties of Proniosomes as a New Approach to Enhance Inhalation Efficiency of Dry Powder Inhalers. AAPS PharmSciTech 21, 156 (2020). https://doi.org/10.1208/s12249-020-01705-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01705-0

KEY WORDS

Navigation