Skip to main content

Advertisement

Log in

Complex Drug Delivery Systems: Controlling Transdermal Permeation Rates with Multiple Active Pharmaceutical Ingredients

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

A transdermal drug delivery system (TDDS) is generally designed to deliver an active pharmaceutical ingredient (API) through the skin for systemic action. Permeation of an API through the skin is controlled by adjusting drug concentration, formulation composition, and patch design. A bilayer, drug-in-adhesive TDDS design may allow improved modulation of the drug release profile by facilitating varying layer thicknesses and drug spatial distribution across each layer. We hypothesized that the co-release of two fixed-dose APIs from a bilayer TDDS could be controlled by modifying spatial distribution and layer thickness while maintaining the same overall formulation composition. Franz cell diffusion studies demonstrated that three different bilayer patch designs, with different spatial distribution of drug and layer thicknesses, could modulate drug permeation and be compared with a reference single-layer monolith patch design. Compared with the monolith, decreased opioid antagonist permeation while maintaining fentanyl permeation could be achieved using a bilayer design. In addition, modulation of the drug spatial distribution and individual layer thicknesses, control of each drug’s permeation could be independently achieved. Bilayer patch performance did not change over an 8-week period in accelerated stability storage conditions. In conclusion, modifying the patch design of a bilayer TDDS achieves an individualized permeation of each API while maintaining constant patch composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Naik A, Kalia YN, Guy RH. Transdermal drug delivery: overcoming the skin’s barrier function. Pharmaceut Sci Tech Today. 2000;3(9):318–26.

  2. Potts RO, Guy RH. Predicting skin permeability. Pharm Res. 1992;9(5):663–9.

    CAS  PubMed  Google Scholar 

  3. Mutalik S, Udupa N. Glibenclamide transdermal patches: physicochemical, pharmacodynamic, and pharmacokinetic evaluations. J Pharm Sci. 2004;93(6):1577–94.

    CAS  PubMed  Google Scholar 

  4. Ravnikar VA. Compliance with hormone therapy. Am J Obstet Gynecol. 1987;156(5):1332–4.

    CAS  PubMed  Google Scholar 

  5. Wiseman LR, McTavish D. Transdermal estradiol/norethisterone: a review of its pharmacological properties and clinical use in postmenopausal women. Drugs Aging. 1994;4(3):238–56.

    CAS  PubMed  Google Scholar 

  6. Dhiman S, Singh TG, Rehni AK. Transdermal patches: a recent approach to new drug delivery system. Int J Pharm Pharm Sci. 2011;3(5):26–34.

    CAS  Google Scholar 

  7. Li L, Fang L, Xu X, Liu Y, Sun Y, He Z. Formulation and biopharmaceutical evaluation of a transdermal patch containing letrozole. Biopharm Drug Dispos. 2010;31(2–3):138–49.

    PubMed  Google Scholar 

  8. Abrams LS, Skee DM, Natarajan J, Wong FA, Anderson GD. Pharmacokinetics of a contraceptive patch (Evra™/Ortho Evra™) containing norelgestromin and ethinyloestradiol at four application sites. Br J Clin Pharmacol. 2002;53(2):141–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lobo S, Sachdeva S, Goswami T. Role of pressure-sensitive adhesives in transdermal drug delivery systems. Ther Deliv. 2016;7(1):33–48.

    CAS  PubMed  Google Scholar 

  10. Tan HS, Pfister WR. Pressure-sensitive adhesives for transdermal drug delivery systems. Pharmaceut Sci Tech Today. 1999;2(2):60–9.

    CAS  Google Scholar 

  11. Higuchi T. Rate of release of medicaments from ointment bases containing drugs in suspension. J Pharm Sci. 1961;50(10):874–5.

    CAS  PubMed  Google Scholar 

  12. Roy SD, Gutierrez M, Flynn GL, Cleary GW. Controlled transdermal delivery of fentanyl: characterizations of pressure-sensitive adhesives for matrix patch design. J Pharm Sci. 1996;85(5):491–5.

    CAS  PubMed  Google Scholar 

  13. Mehdizadeh A, Ghahremani M, Rouini M, Toliyat T. Effects of pressure sensitive adhesives and chemical permeation enhancers on the permeability of fentanyl through rat skin. Acta Pharma. 2006;56:219–29.

    CAS  Google Scholar 

  14. Naruse M, Ogawara K, Kimura T, Konishi R, Higaki K. Development of transdermal therapeutic formulation of CNS5161, a novel N-methyl-D-aspartate receptor antagonist, by utilizing pressure-sensitive adhesives I. Biol Pharm Bull. 2012;35(3):321–8.

    CAS  PubMed  Google Scholar 

  15. Snorradóttir BS, Gudnason PI, Thorsteinsson F, Másson M. Experimental design for optimizing drug release from silicone elastomer matrix and investigation of transdermal drug delivery. Eur J Pharm Sci. 2011;42(5):559–67.

    PubMed  Google Scholar 

  16. Gorukanti SR, Li L, Kim KH. Transdermal delivery of antiparkinsonian agent, benztropine. I. Effect of vehicles on skin permeation. Int J Pharm. 1999;192(2):159–72.

    CAS  PubMed  Google Scholar 

  17. Moser K, Kriwet K, Naik A, Kalia YN, Guy RH. Passive skin penetration enhancement and its quantification in vitro. Eur J Pharm Biopharm. 2001;52(2):103–12.

    CAS  PubMed  Google Scholar 

  18. Williams AC, Barry BW. Skin absorption enhancers. Crit Rev Ther Drug Carrier Syst. 1992;9(3–4):305–53.

    CAS  PubMed  Google Scholar 

  19. Kaushik D, Batheja P, Kilfoyle B, Rai V, Michniak-Kohn B. Percutaneous permeation modifiers: enhancement versus retardation. Expert Opin Drug Del. 2008;5(5):517–29.

    CAS  Google Scholar 

  20. Prodduturi S, Sadrieh N, Wokovich AM, Doub WH, Westenberger BJ, Buhse L. Transdermal delivery of fentanyl from matrix and reservoir systems: effect of heat and compromised skin. J Pharm Sci. 2010;99(5):2357–66.

    CAS  PubMed  Google Scholar 

  21. Padula C, Pescina S, Nicoli S, Santi P. Generic patches containing fentanyl: in vitro equivalence and abuse deterrent evaluation according to EMA and FDA guidelines. Int J Pharm. 2018;537(1):57–63.

    CAS  PubMed  Google Scholar 

  22. Kuczyńska K, Grzonkowski P, Kacprzak Ł, Zawilska JB. Abuse of fentanyl: an emerging problem to face. Forensic Sci Int. 2018;289:207–14.

    PubMed  Google Scholar 

  23. Rudd RA, Aleshire N, Zibbell JE, Matthew GR. Increases in drug and opioid overdose deaths — United States, 2000–2014. Morb Mortal Wkly Rep. 2016;64(50–51):1378–82.

    Google Scholar 

  24. Schauer CKMW, Shand JAD, Reynolds TM. The fentanyl patch boil-up - a novel method of opioid abuse. Basic Clin Pharmacol Toxicol. 2015;117(5):358–9.

    CAS  PubMed  Google Scholar 

  25. Naik A, Kalia YN, Guy RH. Transdermal drug delivery: overcoming the skin’s barrier function. Pharmaceut Sci Tech Today. 2000;3(9):318–26.

    CAS  Google Scholar 

  26. Hammell DC, Hamad M, Vaddi HK, Crooks PA, Stinchcomb AL. A duplex “Gemini” prodrug of naltrexone for transdermal delivery. J Control Release. 2004;97(2):283–90.

    CAS  PubMed  Google Scholar 

  27. Nalluri BN, Milligan C, Chen J, Crooks PA, Stinchcomb AL. In vitro release studies on matrix type transdermal drug delivery systems of naltrexone and its acetyl prodrug. Drug Dev Ind Pharm. 2005;31(9):871–7.

    CAS  PubMed  Google Scholar 

  28. Verebey K, Volavka J, Mule SJ, Resnick R. Naltrexone: disposition, metabolism, and effects after acute and chronic dosing. Clin Pharmacol Ther. 1976;20(3):315–28.

    CAS  PubMed  Google Scholar 

  29. Inc. KP. Embeda® extended release capsules: joint anesthetic and life support drugs (ALSDAC) and drug safety and risk management (DSaRM) advisory committee briefing document. FDA 2010.

  30. Passik SD, editor Issues in long-term opioid therapy: unmet needs, risks, and solutions. Mayo Clinic Proceedings; 2009: Elsevier.

  31. Paul DR. Modeling of solute release from laminated matrices. J Membr Sci. 1985;23(2):221–35.

    CAS  Google Scholar 

  32. Georgiadis MC, Kostoglou M. On the optimization of drug release from multi-laminated polymer matrix devices. J Control Release. 2001;77(3):273–85.

    CAS  PubMed  Google Scholar 

  33. Zecca E, Manzoni A, Centurioni F, Farina A, Bonizzoni E, Seiler D, et al. Pharmacokinetic study between a bilayer matrix fentalyl patch and a monolayer matrix fentanyl patch: single dose administration in healthy volunteers. Br J Clin Pharmacol. 2015;80(1):110–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Romualdi P, Santi P, Candeletti S. Alghedon Fentanyl Transdermal System. Minerva Med. 2016;108(2):169–75.

    PubMed  Google Scholar 

  35. Chen G-S, Kim D-D, Chien YW. Dual-controlled transdermal delivery of levonorgestrel and estradiol: enhanced permeation and modulated delivery. JCR. 1995;34:129–43.

    CAS  Google Scholar 

  36. Cordery SF, Husbands SM, Bailey CP, Guy RH, Delgado-Charro MB. Simultaneous transdermal delivery of buprenorphine hydrochloride and naltrexone hydrochloride by iontophoresis. Mol Pharm. 2019;16(6):2808–16.

    CAS  PubMed  Google Scholar 

  37. Mutalik S, Udupa N. Transdermal delivery of glibenclamide and glipizide: in vitro permeation studies through mouse skin. Pharmazie. 2002;57(12):838–41.

    CAS  PubMed  Google Scholar 

  38. Kamil N, Nair AB, Attimarad M. Development of transdermal delivery system of dexamethasone, palonosetron and aprepitant for combination antiemetic therapy. Indian J Pharm Educ Res. 2016;50(3):472–81.

    CAS  Google Scholar 

  39. Heard CM, Johnson S, Moss G, Thomas CP. In vitro transdermal delivery of caffeine, theobromine, theophylline and catechin from extract of Guarana, Paullinia cupana Int J Pharm 2006;317(1):26–31.

  40. Harrison LI, Zurth C, Gunther C, Karara AH, Melikian A, Lipp R. Simultaneous estradiol and levonorgestrel transdermal delivery from a 7-day patch: in vitro and in vivo drug deliveries of three formulations. Drug Dev Ind Pharm. 2007;33(4):373–80.

    CAS  PubMed  Google Scholar 

  41. Lee PJ, Langer R, Shastri VP. Novel microemulsion enhancer formulation for simultaneous transdermal delivery of hydrophilic and hydrophobic drugs. Pharm Res. 2003;20(2):264–9.

    CAS  PubMed  Google Scholar 

  42. Puri A, Murnane KS, Blough BE, Banga AK. Effects of chemical and physical enhancement techniques on transdermal delivery of 3-fluoroamphetamine hydrochloride. Int J Pharm. 2017;528(1–2):452–62.

    CAS  PubMed  Google Scholar 

  43. Martins PP, Estrada AD, Smyth HD. A human skin high-throughput formulation screening method using a model hydrophilic drug. Int J Pharm. 2019;565:557–68.

    CAS  PubMed  Google Scholar 

  44. Davies DJ, Ward R, Heylings J. Multi-species assessment of electrical resistance as a skin integrity marker for in vitro percutaneous absorption studies. Toxicol in Vitro. 2004;18(3):351–8.

    CAS  PubMed  Google Scholar 

  45. Haq A, Dorrani M, Goodyear B, Joshi V, Michniak-Kohn B. Membrane properties for permeability testing: skin versus synthetic membranes. Int J Pharm. 2018;539(1):58–64.

    CAS  PubMed  Google Scholar 

  46. Charalambopoulou GC, Kikkinides ES, Papadokostaki KG, Stubos AK, Papaioannou AT. Numerical and experimental investigation of the diffusional release of a dispersed solute from polymeric multilaminate matrices. J Control Release. 2001;70(3):309–19.

    CAS  PubMed  Google Scholar 

  47. Nauman EB, Patel K, Karande P. Design of optimized diffusion-controlled transdermal drug delivery systems. Drug Dev Ind Pharm. 2011;37(1):93–102.

    CAS  PubMed  Google Scholar 

  48. Miller II KJSA, VT, US), Govil, Sharad K. (Essex, VT, US), Bhatia, Kuljit Singh (Scottsdale, AZ, US), inventor; MYLAN PHARMACEUTICALS INC., assignee. Fentanyl suspension-based silicone adhesive formulations and devices for transdermal delivery of fentanyl. United States. 2007 11/08/2007.

Download references

Acknowledgments

Research reported in this paper was supported by the National Institute on Drug Abuse (NIDA) of the NIH under project grant R44DA042639 awarded to Cassava Sciences, Inc. We also acknowledge the use of tissues procured through the National Disease Research Interchange (NDRI) with support from NIH grant U42OD11158.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary N. Warnken.

Ethics declarations

Disclaimer

The content is solely the responsibility of the authors of this paper and does not necessarily represent the official views of NIH.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, D.A., Martins, P.P., Zamloot, M.S. et al. Complex Drug Delivery Systems: Controlling Transdermal Permeation Rates with Multiple Active Pharmaceutical Ingredients. AAPS PharmSciTech 21, 165 (2020). https://doi.org/10.1208/s12249-020-01682-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01682-4

KEY WORDS

Navigation