Skip to main content
Log in

Development of a Two-Compartment System In vitro Dissolution Test and Correlation with In vivo Pharmacokinetic Studies for Celecoxib

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The objective of this study was to develop a novel open-mode two-compartment system dissolution apparatus to simulate the dissolution and absorption of poorly soluble drugs and to establish an in vitro-in vivo correlation (IVIVC). Celecoxib (CEB) was selected as a model drug, and in vitro dissolution was performed using the novel dissolution apparatus with acetate buffers at pH 4.5 containing Tween 80 (0.15%, w/v), at a flow rate of 30 mL/min and an agitation rate of 50 rpm. Cumulative release of all formulations was incomplete at approximately 70–80%, which likely reflected in vivo dissolution. Corresponding pharmacokinetic studies were performed in which twelve healthy male subjects from two bioequivalence studies received either one immediate release (IR) dose of the test (test 1 or test 2) or the reference formulation (Celebrex®, 200 mg). Individual plasma profiles of the formulations were deconvoluted via the Wanger-Nelson method to obtain the mean absorption fractions. A level A correlation was successfully developed with a good R2. The Weibull equation was used to describe the in vitro dissolution and in vivo absorption kinetics. In vitro dissolution correlated with in vivo absorption was applied successfully to predict the in vivo plasma concentrations-time profiles of the CEB formulations. Compared with conventional methods, the novel dissolution device showed great potential for discriminating the dissolution between formulations and generic drugs, which may provide a tool for making in vivo predictions for next bioequivalence trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

(IVIVC):

In vitro-in vivo correlation

(CEB):

Celecoxib

(BE):

Bioequivalent

(BCS):

Biopharmaceutics Classification System

(HPLC):

High-performance liquid chromatography

(FDA):

Food and Drug Administration

(SDS):

Sodium dodecyl sulfate

References

  1. Emami J. In vitro - in vivo correlation: from theory to applications. J Pharm Pharm Sci. 2006;9(2):169–89.

    CAS  PubMed  Google Scholar 

  2. Deng J, Staufenbiel S, Hao S, Wang B, Dashevskiy A, Bodmeier R. Development of a discriminative biphasic in vitro dissolution test and correlation with in vivo pharmacokinetic studies for differently formulated racecadotril granules. J Control Release. 2017;255:202–9. https://doi.org/10.1016/j.jconrel.2017.04.034.

    Article  CAS  PubMed  Google Scholar 

  3. FDA US. Guidance for industry: dissolution testing of immediate-release solid oral dosage forms. Food and Drug Administration, Center for Drug Evaluation and Research(CDER). 1997.

  4. Gonzalez-Garcia I, Mangas-Sanjuan V, Merino-Sanjuan M, Alvarez-Alvarez C, Diaz-Garzon Marco J, Rodriguez-Bonnin MA, et al. IVIVC approach based on carbamazepine bioequivalence studies combination. Pharmazie. 2017;72(8):449–55. https://doi.org/10.1691/ph.2017.7011.

    Article  CAS  PubMed  Google Scholar 

  5. Kim TH, Bulitta JB, Kim DH, Shin S, Shin BS. Novel extended in vitro-in vivo correlation model for the development of extended-release formulations for baclofen: from formulation composition to in vivo pharmacokinetics. Int J Pharm. 2019;556:276–86. https://doi.org/10.1016/j.ijpharm.2018.12.007.

    Article  CAS  PubMed  Google Scholar 

  6. Tietz K, Gutknecht SI, Klein S. Predicting local drug availability of locally acting lozenges: from method design to a linear level A IVIVC. Eur J Pharm Biopharm. 2018;133:269–76. https://doi.org/10.1016/j.ejpb.2018.10.015.

    Article  CAS  PubMed  Google Scholar 

  7. Jacob S, Nair AB. An updated overview with simple and practical approach for developing in vitro-in vivo correlation. Drug Dev Res. 2018;79(3):97–110. https://doi.org/10.1002/ddr.21427.

    Article  CAS  PubMed  Google Scholar 

  8. Kataoka M, Yano K, Hamatsu Y, Masaoka Y, Sakuma S, Yamashita S. Assessment of absorption potential of poorly water-soluble drugs by using the dissolution/permeation system. Eur J Pharm Biopharm. 2013;85(3 Pt B):1317–24. https://doi.org/10.1016/j.ejpb.2013.06.018.

    Article  CAS  PubMed  Google Scholar 

  9. Higuchi M, Nishida S, Yoshihashi Y, Tarada K, Sugano K. Prediction of coning phenomena for irregular particles in paddle dissolution test. Eur J Pharm Sci. 2015;76:213–6. https://doi.org/10.1016/j.ejps.2015.05.019.

    Article  CAS  PubMed  Google Scholar 

  10. Gray VA. Pharmaceutical analysis | dissolution testing. In: Worsfold P, Poole C, Townshend A, Miró M, editors. Encyclopedia of analytical science. Third ed. Oxford: Academic Press; 2019. p. 182–7.

    Google Scholar 

  11. Hate SS, Reutzel-Edens SM, Taylor LS. Absorptive dissolution testing of supersaturating systems: impact of absorptive sink conditions on solution phase behavior and mass transport. Mol Pharm. 2017;14(11):4052–63. https://doi.org/10.1021/acs.molpharmaceut.7b00740.

    Article  CAS  PubMed  Google Scholar 

  12. Delalonde M, Ruiz T. Dissolution of pharmaceutical tablets: the influence of penetration and drainage of interstitial fluids. Chem Eng Process. 2008;47(3):370–6. https://doi.org/10.1016/j.cep.2007.01.003.

    Article  CAS  Google Scholar 

  13. Park K. Absence of in vivo-in vitro correlation in per-oral drug delivery. J Control Release. 2014;180:150. https://doi.org/10.1016/j.jconrel.2014.03.020.

    Article  CAS  PubMed  Google Scholar 

  14. Lee C-M, Luner PE, Locke K, Briggs K. Application of an artificial stomach-duodenum reduced gastric pH dog model for formulation principle assessment and mechanistic performance understanding. J Pharm Sci. 2017;106(8):1987–97. https://doi.org/10.1016/j.xphs.2017.02.015.

    Article  CAS  PubMed  Google Scholar 

  15. Mizoguchi M, Kataoka M, Yokoyama K, Aihara R, Wada K, Yamashita S. Application of an in vitro dissolution/permeation system to early screening of oral formulations of poorly soluble, weakly basic drugs containing an acidic pH-modifier. J Pharm Sci. 2018;107(9):2404–10. https://doi.org/10.1016/j.xphs.2018.05.009.

    Article  CAS  PubMed  Google Scholar 

  16. Shi Y, Gao P, Gong Y, Ping H. Application of a biphasic test for characterization of in vitro drug release of immediate release formulations of celecoxib and its relevance to in vivo absorption. Mol Pharm. 2010;7(5):1458–65. https://doi.org/10.1021/mp100114a.

    Article  CAS  PubMed  Google Scholar 

  17. Phillips DJ, Pygall SR, Cooper VB, Mann JC. Overcoming sink limitations in dissolution testing: a review of traditional methods and the potential utility of biphasic systems. J Pharm Pharmacol. 2012;64(11):1549–59. https://doi.org/10.1111/j.2042-7158.2012.01523.x.

    Article  CAS  PubMed  Google Scholar 

  18. Fotaki N, Symillides M, Reppas C. In vitro versus canine data for predicting input profiles of isosorbide-5-mononitrate from oral extended release products on a confidence interval basis. Eur J Pharm Sci. 2005;24(1):115–22. https://doi.org/10.1016/j.ejps.2004.10.003.

    Article  CAS  PubMed  Google Scholar 

  19. Shono Y, Jantratid E, Janssen N, Kesisoglou F, Mao Y, Vertzoni M, et al. Prediction of food effects on the absorption of celecoxib based on biorelevant dissolution testing coupled with physiologically based pharmacokinetic modeling. Eur J Pharm Biopharm. 2009;73(1):107–14. https://doi.org/10.1016/j.ejpb.2009.05.009.

    Article  CAS  PubMed  Google Scholar 

  20. Yazdanian M, Briggs K, Jankovsky C, Hawi A. The “high solubility” definition of the current FDA Guidance on Biopharmaceutical Classification System may be too strict for acidic drugs. Pharm Res. 2004;21(2):293–9.

    Article  CAS  Google Scholar 

  21. Gangadharappa HV, Chandra Prasad SM, Singh RP. Formulation, in vitro and in vivo evaluation of celecoxib nanosponge hydrogels for topical application. J Drug Deliv Sci Technol. 2017;41:488–501. https://doi.org/10.1016/j.jddst.2017.09.004.

    Article  CAS  Google Scholar 

  22. Mudie DM, Murray K, Hoad CL, Pritchard SE, Garnett MC, Amidon GL, et al. Quantification of gastrointestinal liquid volumes and distribution following a 240 mL dose of water in the fasted state. Mol Pharm. 2014;11(9):3039–47. https://doi.org/10.1021/mp500210c.

    Article  CAS  PubMed  Google Scholar 

  23. Kostewicz ES, Abrahamsson B, Brewster M, Brouwers J, Butler J, Carlert S, et al. In vitro models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci. 2014;57:342–66. https://doi.org/10.1016/j.ejps.2013.08.024.

    Article  CAS  PubMed  Google Scholar 

  24. Kakhi M. Classification of the flow regimes in the flow-through cell. Eur J Pharm Sci. 2009;37(5):531–44. https://doi.org/10.1016/j.ejps.2009.04.003.

    Article  CAS  PubMed  Google Scholar 

  25. Wagner JG, Nelson E. Kinetic analysis of blood levels and urinary excretion in the absorptive phase after single doses of drug. J Pharm Sci. 1964;53(11):1392–403. https://doi.org/10.1002/jps.2600531126.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263–71. https://doi.org/10.1208/s12248-010-9185-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ruiz Picazo A, Martinez-Martinez MT, Colon-Useche S, Iriarte R, Sanchez-Dengra B, Gonzalez-Alvarez M, et al. In vitro dissolution as a tool for formulation selection: Telmisartan two-step IVIVC. Mol Pharm. 2018;15(6):2307–15. https://doi.org/10.1021/acs.molpharmaceut.8b00153.

    Article  CAS  PubMed  Google Scholar 

  28. Asmanova N, Koloskov G, Ilin AI. Coupled solutions of one- and two-compartment pharmacokinetic models with first-order absorption. J Pharmacokinet Pharmacodyn. 2013;40(2):229–41. https://doi.org/10.1007/s10928-013-9312-6.

    Article  CAS  PubMed  Google Scholar 

  29. EMA. Guideline on quality of oral modified release products. 2014.

  30. FDA. Guidance for industry: extended release oral dosage forms: development, evaluation and application of in vitro/in vivo correlations. Food and Drug Administration, Rockville, MD. 1997.

  31. Misra S, Wahab MF, Patel DC, Armstrong DW. The utility of statistical moments in chromatography using trapezoidal and Simpson’s rules of peak integration. J Sep Sci. 2019;42(8):1644–57. https://doi.org/10.1002/jssc.201801131.

    Article  CAS  PubMed  Google Scholar 

  32. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–33.

    Article  CAS  Google Scholar 

  33. Vrieze SI. Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychol Methods. 2012;17(2):228–43. https://doi.org/10.1037/a0027127.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nicolaides E, Galia E, Efthymiopoulos C, Dressman JB, Reppas C. Forecasting the in vivo performance of four low solubility drugs from their in vitro dissolution data. Pharm Res. 1999;16(12):1876–82. https://doi.org/10.1023/a:1018959511323.

    Article  CAS  PubMed  Google Scholar 

  35. Dressman JB, Reppas C. In vitro-in vivo correlations for lipophilic, poorly water-soluble drugs. Eur J Pharm Sci. 2000;11(Suppl 2):S73–80.

    Article  CAS  Google Scholar 

  36. Posti J, Speiser PP. Sink conditions in the flow-through cell during dissolution. Int J Pharm. 1980;5:101–7.

    Article  CAS  Google Scholar 

  37. Wang F, Barnes TJ, Prestidge CA. Celecoxib confinement within mesoporous silicon for enhanced oral bioavailability. Mesoporous Biomaterials. 2014;1(1). https://doi.org/10.2478/mesbi-2013-0001.

  38. Paulson SK, Hribar JD, Liu NW, Hajdu E, et al. Metabolism and excretion of [(14)C] celecoxib in healthy male volunteers. Drug Metab Dispos. 2000;28:308–14.

    CAS  PubMed  Google Scholar 

  39. Levy G, Leonards JR, Procknal JA. Interpretation of in vitro dissolution data relative to the gastrointestinal absorption characteristics of drugs in tablets. J Pharm Sci. 1967;56(10):1365–7. https://doi.org/10.1002/jps.2600561039.

    Article  CAS  PubMed  Google Scholar 

  40. Klein S, Shah VP. A standardized mini paddle apparatus as an alternative to the standard paddle. AAPS PharmSciTech. 2008;9(4):1179–84. https://doi.org/10.1208/s12249-008-9161-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schall R, Luus HG, Steinijans VW, Hauschke D. Choice of characteristics and their bioequivalence ranges for the comparison of absorption rates of immediate-release drug formulations. Int J Clin Pharmacol Ther. 1994;32(7):323–8.

    CAS  PubMed  Google Scholar 

  42. Kakhi M, Suarez-Sharp S, Shepard T, Chittenden J. Application of an NLME–stochastic deconvolution approach to level A IVIVC modeling. J Pharm Sci. 2017;106(7):1905–16. https://doi.org/10.1016/j.xphs.2017.03.015.

    Article  CAS  PubMed  Google Scholar 

  43. Li ZQ, He X, Gao X, Xu YY, Wang YF, Gu H, et al. Study on dissolution and absorption of four dosage forms of isosorbide mononitrate: level A in vitro-in vivo correlation. Eur J Pharm Biopharm. 2011;79(2):364–71. https://doi.org/10.1016/j.ejpb.2011.04.015.

    Article  CAS  PubMed  Google Scholar 

  44. Cupera J, Lansky P, Sklubalova Z. Sampling times influence the estimate of parameters in the Weibull dissolution model. Eur J Pharm Sci. 2015;78:171–6. https://doi.org/10.1016/j.ejps.2015.07.015.

    Article  CAS  PubMed  Google Scholar 

  45. Cardot JM, Lukas JC, Muniz P. Time scaling for in vitro-in vivo correlation: the inverse release function (IRF) approach. AAPS J. 2018;20(6):95. https://doi.org/10.1208/s12248-018-0250-5.

    Article  CAS  PubMed  Google Scholar 

  46. Park MS, Shim WS, Yim SV, Lee KT. Development of simple and rapid LC-MS/MS method for determination of celecoxib in human plasma and its application to bioequivalence study. J Chromatogr B. 2012;902:137–41. https://doi.org/10.1016/j.jchromb.2012.06.016.

    Article  CAS  Google Scholar 

  47. Paulson SK, Vaughn MB, Jessen SM, Lawal Y, Gresk CJ, Yan B, et al. Pharmacokinetics of celecoxib after oral administration in dogs and humans: effect of food and site of absorption. J Pharmacol Exp Ther. 2001;297(2):638–45.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Hunan Huize Bio-pharmaceutical Co., Ltd., and Hunan Taixin Pharmaceutical Technology Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeneng Cheng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 12 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Zhang, G., Wang, L. et al. Development of a Two-Compartment System In vitro Dissolution Test and Correlation with In vivo Pharmacokinetic Studies for Celecoxib. AAPS PharmSciTech 21, 59 (2020). https://doi.org/10.1208/s12249-019-1612-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1612-8

KEY WORDS

Navigation